首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BaSO4 precipitated from mixed salt solutions by common techniques for SO isotopic analysis may contain quantities of H2O and NO that introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that δ18O values of CO produced by decomposition of precipitated BaSO4 in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO and NO and the δ18O values of the H2O, NO, and SO. Typical δ18O errors are of the order of 0.5 to 1‰ in many sample types, and can be larger in samples containing atmospheric NO, which can cause similar errors in δ17O and Δ17O. These errors can be reduced by (1) ion chromatographic separation of SO from NO, (2) increasing the salinity of the solutions before precipitating BaSO4 to minimize incorporation of H2O, (3) heating BaSO4 under vacuum to remove H2O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured δ18O values based on amounts and isotopic compositions of coexisting H2O and NO. These procedures are demonstrated for SO isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SO sources and reaction mechanisms. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

2.
Nitrogen (N) and oxygen (O) isotope ratios of NO are often used to trace dominant NO pollution sources in water. Both the silver nitrate (AgNO3) method and the bacterial denitrification method are frequently used analytical techniques to determine δ15N‐ and δ18O‐NO in aqueous samples. The AgNO3 method is applicable for freshwater and requires a concentration of 100–200 µmol of NO for isotope determination. The bacterial denitrification method is applicable for seawater and freshwater and for KCl extracts of soils with a NO concentration as low as 1 µmol. We have carried out a thorough method comparison using 42 real surface water samples having a wide range of δ15N‐ and δ18O‐NO values and NO concentrations. Various correction pairs using three international references and blanks were used to correct raw δ15N‐ and δ18O‐NO values. No significant difference between the corrected data was observed when using various correction pairs for each analytical method. Both methods also showed excellent repeatability with high intraclass correlation coefficients (ICC). The ICC of the AgNO3 method was 0.992 for δ15N and 0.970 for δ18O. The ICC of the bacterial denitrification method was 0.995 for δ15N and 0.954 for δ18O. Moreover, a positive linear relationship with a high correlation coefficient (r ≥ 0.88) between the two methods was found for δ15N‐ and δ18O‐NO. The comparability of the methods was assessed by the Bland‐Altman technique using 95% limits of agreement. The average difference between results obtained by the bacterial denitrification and the AgNO3 method for δ15N was ?1.5‰ with 95% limits of agreement ?3.6 and +0.5‰. For δ18O this was +2.0‰, with 95% limits of agreement ?3.3 and +7.3‰. We found that for δ15N and for δ18O, 97% of the differences fell within these 95% limits of agreement. In conclusion, the AgNO3 and the bacterial denitrification methods are highly correlated and statistically interchangeable. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Evaluation of the openness of the nitrogen (N) cycle in forest ecosystems is important in efforts to improve forest management because the N supply often limits primary production. The use of the oxygen isotope ratio (δ18O) of nitrate is a promising approach to determine how effectively atmospheric nitrate can be retained in a forest ecosystem. We investigated the δ18O of nitrate in stream water in order to estimate the contribution of atmospheric NO in stream‐water NO (fatm) from 26 watersheds with different stand ages (1–87 years) in Japan. The stream‐water nitrate concentrations were high in young forests whereas, in contrast, old forests discharged low‐nitrate stream water. These results implied a low fatm and a closed N cycle in older forests. However, the δ18O values of nitrate in stream water revealed that fatm values were higher in older forests than in younger forests. These results indicated that even in old forests, where the discharged N loss was small, atmospheric nitrate was not retained effectively. The steep slopes of the studied watersheds (>40°) which hinder the capturing of atmospheric nitrate by plants and microbes might be responsible for the inefficient utilization of atmospheric nitrate. Moreover, the unprocessed fraction of atmospheric nitrate in the stream‐water nitrate in the forest (funprocessed) was high in the young forest (78%), although funprocessed was stable and low for other forests (5–13%). This high funprocessed of the young forest indicated that the young forest retained neither atmospheric NO nor soil NO effectively, engendering high stream‐water NO concentrations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Thin films of AgSbS2 are important for phase‐change memory applications. This solid is deposited by various techniques, such as metal organic chemical vapour deposition or laser ablation deposition, and the structure of AgSbS2(s), as either amorphous or crystalline, is already well characterized. The pulsed laser ablation deposition (PLD) of solid AgSbS2 is also used as a manufacturing process. However, the processes in plasma have not been well studied. We have studied the laser ablation of synthesized AgSbS2(s) using a nitrogen laser of 337 nm and the clusters formed in the laser plume were identified. The ablation leads to the formation of various single charged ternary AgpSbqSr clusters. Negatively charged AgSbS, AgSb2S, AgSb2S, AgSb2S and positively charged ternary AgSbS+, AgSb2S+, AgSb2S, AgSb2S clusters were identified. The formation of several singly charged Ag+, Ag, Ag, Sb, Sb, S ions and binary AgpSr clusters such as AgSb, Ag3S?, SbS (r = 1–5), Sb2S?, Sb2S, Sb3S (r = 1–4) and AgS, SbS+, SbS, Sb2S+, Sb2S, Sb3S (r = 1–4), AgSb was also observed. The stoichiometry of the clusters was determined via isotopic envelope analysis and computer modeling. The relation of the composition of the clusters to the crystal structure of AgSbS2 is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Ternary chalcogenide As‐S‐Se glasses, important for optics, computers, material science and technological applications, are often made by pulsed laser deposition (PLD) technology but the plasma composition formed during the process is mostly unknown. Therefore, the formation of clusters in a plasma plume from different glasses was followed by laser desorption ionization (LDI) or laser ablation (LA) time‐of‐flight mass spectrometry (TOF MS) in positive and negative ion modes. The LA of glasses of different composition leads to the formation of a number of binary AspSq, AspSer and ternary AspSqSer singly charged clusters. Series of clusters with the ratio As:chalcogen = 3:3 (As3S, As3S2Se+, As3SSe), 3:4 (As3S, As3S3Se+, As3S2Se, As3SSe, As3Se), 3:1 (As3S+, As3Se+), and 3:2 (As3S, As3SSe+, As3Se), formed from both bulk and PLD‐deposited nano‐layer glass, were detected. The stoichiometry of the AspSqSer clusters was determined via isotopic envelope analysis and computer modeling. The structure of the clusters is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
To investigate which of ammonium (NH) or nitrate (NO) is used by plants at gradient sites with different nitrogen (N) availability, we measured the natural abundance of 15N in foliage and soil extractable N. Hinoki cypress (Chamaecyparis obtusa Endlicher) planted broadly in Japan was selected for use in this study. We estimated the source proportion of foliar N (NH vs. NO) quantitatively using mass balance equations. The results showed that C. obtusa used mainly NH in N‐limited forests, although the dependence of C. obtusa on NO was greater in other NO‐rich forests. We regarded dissolved organic N (DON) as a potential N source because a previous study demonstrated that C. obtusa can take up glycine. Thus we added DON to our mass balance equations and calculated the source proportion using an isotope‐mixing model (IsoSource model). The results still showed a positive correlation between the calculated plant N proportion of NO and the NO pool size in the soil, indicating that high NO availability increases the reliance of C. obtusa on NO. Our data suggest the shift of the N source for C. obtusa from NH to NO according to the relative availability of NO. They also show the potential of the foliar δ15N of C. obtusa as an indicator of the N status in forest ecosystems with the help of the δ15N values of soil inorganic and organic N. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Currently, bacterial denitrification is becoming the accepted method for δ15N‐ and δ18O‐NO determination. However, proper correction methods with international references (USGS32, USGS34 and USGS35) are needed. As a consequence, it is important to realize that the corrected isotope values are derived from a combination of several other measurements with associated uncertainties. Therefore, it is necessary to consider the propagated uncertainty on the final isotope value. This study demonstrates how to correctly estimate the uncertainty on corrected δ15N‐ and δ18O‐NO values using a first‐order Taylor series approximation. The bacterial denitrification method errors from 33 batches of 561 surface water samples varied from 0.2 to 2.1‰ for δ15N‐NO and from 0.7 to 2.3‰ for δ18O‐NO, which is slightly wider than the machine error, which varied from 0.2 to 0.6‰ for δ15N‐N2O and from 0.4 to 1.0‰ for δ18O‐N2O. The overall uncertainties, which are composed of the machine error and the method error, for the 33 batches ranged from 0.3 to 2.2‰ for δ15N‐NO and from 0.8 to 2.5‰ for δ18O‐NO. In addition, the mean corrected δ15N and δ18O values of 132 KNO3‐IWS (internal working standard) measurements were computed as 8.4 ± 1.0‰ and 25.1 ± 2.0‰, which is a slight underestimation for δ15N and overestimation for δ18O compared with the accepted values (δ15N = 9.9 ± 0.3‰ and δ18O = 24.0 ± 0.3‰). The overall uncertainty of the bacterial denitrification method allows the use of this method for source identification of NO. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Binary chalcogenide As‐Se glasses and their thin films are important for optics, computers, materials science and technological applications. To increase understanding of the properties of thin films fabricated by plasma deposition techniques, more information concerning the physics of plasma plume is needed. In this study the formation of clusters in plasma plume from different As‐Se glasses by laser desorption ionization (LDI) or laser ablation (LA) was studied by time‐of‐flight mass spectrometry (TOF MS) in positive and negative ion modes. Formation of a number of AspSeq singly charged clusters As3Se (q = 1–5), AsSe (q = 1–3), As2Se (q = 2–4), and As3Se (q = 2–5) was found from As‐Se glasses with the molar ratio As:Se in the range from 1:2 to 7:3. The stoichiometry of the AspSeq clusters was determined via isotopic envelope analysis and computer modeling. The structure of the clusters is proposed and the relationship to the structure of the parent glasses, as also suggested by Raman scattering spectra, is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Quadrupole secondary ion mass spectrometry (qSIMS) characterization of a metallized polypropylene film used in the manufacturing of capacitors has been performed. Ar+ primary ions were used to preserve the oxidation state of the surface. The sample exhibits an incomplete metallization that made it difficult to determine the exact location of the metal‐polymer interface due to the simultaneous contribution of ions with identical m/z values from the metallic and the polymer layers. Energy filtering by means of a 45° electrostatic analyzer allowed resolution of the metal‐polymer interface by selecting a suitable kinetic energy corresponding to the ions generated in the metallized layer but not from the polymer. Under these conditions, selective analyses of isobaric interferences such as 27Al+ and 27C2H or 43AlO+ and 43C3H have been successfully performed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We investigated the δ15N profile of N (extractable NH, NO, and organic N (EON)) in the soil of a N‐saturated subtropical forest. The order of δ15N in the soil was EON > NH > NO. Although the δ15N of EON had been expected to be similar to that of bulk soil N, it was higher than that of bulk soil N by 5‰. The difference in δ15N between bulk soil N and EON (Δ15Nbulk‐EON) was correlated significantly with the soil C/N ratio. This correlation implies that carbon availability, which determines the balance between N assimilation and dissimilation of soil microbes, is responsible for the high δ15N of EON, as in the case of soil microbial biomass δ15N. A thorough δ15N survey of available N (NH, NO, and EON) in the soil profiles from the organic layer to 100 cm depth revealed that the δ15N of the available N forms did not fully overlap with the δ15N of plants. This mismatch in δ15N between that of available N and that of plants reflects apparent isotopic fractionation during N uptake by plants, emphasizing the high N availability in this N‐saturated forest. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The characteristic fragmentations of a pTyr group in the negative ion electrospray mass spectrum of the [M–H]? anion of a peptide or protein involve the formation of PO (m/z 79) and the corresponding [(M‐H)?–HPO3]? species. In some tetrapeptides where pTyr is the third residue, these characteristic anion fragmentations are accompanied by ions corresponding to H2PO and [(M‐H)?–H3PO4]? (these are fragmentations normally indicating the presence of pSer or pThr). These product ions are formed by rearrangement processes which involve initial nucleophilic attack of a C‐terminal ‐CO [or ‐C(?NH)O?] group at the phosphorus of the Tyr side chain [an SN2(P) reaction]. The rearrangement reactions have been studied by ab initio calculations at the HF/6‐31+G(d)//AM1 level of theory. The study suggests the possibility of two processes following the initial SN2(P) reaction. In the rearrangement (involving a C‐terminal carboxylate anion) with the lower energy reaction profile, the formation of the H2PO and [(M‐H)?–H3PO4]? anions is endothermic by 180 and 318 kJ mol?1, respectively, with a maximum barrier (to a transition state) of 229 kJ mol?1. The energy required to form H2PO by this rearrangement process is (i) more than that necessary to effect the characteristic formation of PO from pTyr, but (ii) comparable with that required to effect the characteristic α, β and γ backbone cleavages of peptide negative ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Some newly synthesized 10B nido‐carborane derivatives, i.e., 7,8‐dicarba‐nido‐undecaborane monoanions ([7‐Me‐8‐R‐C2B9H10]K+, R = H, butyl, hexyl, octyl and decyl), have been fully characterised and examined by electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry with liquid chromatographic separation (LC/ESI‐FTICR‐MS). These boron‐containing compounds exhibit abundant molecular ions ([M]?) at m/z 140.22631 [CB9H14]?, m/z 196.28883 [CB9H22]?, m/z 224.32032 [CB9H26]?, m/z 252.35133 [CB9H30]? and m/z 280.38354 [CB9H34]? at the normal tube lens voltage setting of ?90 V, which was an instrumental parameter value selected in the tuning operation. Additional [M–nH2]? (n = 1?4) ions were observed in the mass spectra when higher tube lens voltages were applied, i.e., ?140 V. High‐resolution FTICR‐MS data revealed the accurate masses of fragment ions, bearing either an even or an odd number of electrons. Collision‐induced dissociation of the [M–nH2]? ions (n = 0–4) in the quadrupole linear ion trap (LTQ) analyzer confirmed the loss of hydrogen molecules from the molecular ions. It is suggested that the loss of H2 molecules from the alkyl chain is a consequence of the stabilization effect of the nido‐carborane charged polyhedral skeleton. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A mass spectrometric method using electrospray ionization with triple quadrupole and quadrupole time‐of‐flight hybrid (Q‐Tof) mass spectrometry has been applied to the structural characterization of dihydroflavonols. This family of compounds has been studied by liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the first time in this work. A comprehensive study of the product ion MS spectra of the [M+H]+ ion of a commercially available standard has been performed. The most useful fragmentations in terms of structural identification are those that involve cleavage of the C‐ring, resulting in diagnostic ions of dihydroflavonol family: 1,3A, 1,2B, 1,2B‐CO, 0,2A, 0,2A‐H2O, 0,2A‐CO, and 0,2A‐H2O‐CO, that allow the characterization of the substituents in the A‐ and B‐rings. In addition to those ions, other product ions due to losses of H2O and CO molecules from the Y ion were observed. Their fragmentation mechanisms and ion structures have been proposed. The established fragmentation patterns have been used to successfully identity three dihydroflavonols found in tangerine juices for the first time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Nitrogenous materials can be transferred out of the topsoil, either vertically to a greater depth, or in lateral pathways to surface waters, and they may also become transformed, with the potential of generating environmentally active agents. We measured the production of NO and N2O in two contrasting subsoils (70 to 90 cm): one poorly drained and the other freely drained and compared this with the topsoil (0 to 20 cm) of the corresponding soils. The soils were incubated aerobically in jars with subtreatments of either synthetic cattle urine or deionised water and sampled at intervals up to 34 days. 15N‐NO was used to determine the processes responsible for NO and N2O production. The headspace was analysed for the concentrations of N2O, NO and CO2 and 15N enrichment of N2O. The soil samples were extracted and analysed for NO, NO and NH, and the 15N enrichment of the extracts was measured after conversion into N2O and N2. The study demonstrated the potential for NO, N2O and NO to be generated from subsoils in laboratory incubations. Differences in these N dynamics occurred due to subsoil drainage class. In the freely drained subsoil the rates of NO and NO production were higher than those observed for the corresponding topsoil, with mean maximum production rates of 3.5 µg NO‐N g−1 dry soil on day 16 and 0.12 µg NO‐N g−1 dry soil on day 31. The calculated total losses of N2O‐N as percentages of the applied synthetic urine N were 0.37% (freely drained subsoil), 0.24% (poorly drained subsoil), 0.43% (freely drained topsoil) and 2.09% (poorly drained topsoil). The calculated total losses of NO‐N as percentages of the applied synthetic urine N were 1.53% (freely drained subsoil), 0.02% (poorly drained subsoil), 0.25% (freely drained topsoil) and 0.08% (poorly drained topsoil). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Measurements of the translational energy loss accompanying the charge-stripping reactions M++N→M2++N+e and M2++N→M3++N+e have been performed for C, C and C, C respectively. The energy nesessary to remove the second electron from Buckminsterfullerene was determined, Q=IE(C→C=12.25±0.5 eV.  相似文献   

16.
A proton transfer reaction mass spectrometer (PTR‐MS) instrument was adapted to employ NO+ as a chemical reagent ion without any hardware changes by switching the reagent ion source gas from water vapor to dry air. Ionization of dry air within the hollow cathode ion source generates a very intense source of NO+ with only a minor impurity of NO. The intensities of the primary NO+ reagent ion and the unwanted impurity NO are controllable and dependent on the operational conditions of the hollow cathode ion source. Ion source tuning parameters are described, which maintain an intense source of NO+ while keeping the impurity NO signal to less than 2% of the total reagent ion intensity. This method is applied to the detection of 1,3‐butadiene. NO+ reacts efficiently with 1,3‐butadiene via a charge exchange reaction to produce only the molecular ion, which is detected at m/z 54. Detection sensitivities of the order of 45 pptv for a 1‐s measurement of 1,3‐butadiene are demonstrated. We present the first real‐time on‐line sub parts per billion measurement of 1,3‐butadiene in the ambient atmosphere. The only likely interference is from 1,2‐butadiene. Concurrent measurements of benzene are provided and suggest that the vehicular emissions are the predominant source of 1,3‐butadiene in a suburban Boston area monitoring location. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
An ion of formula C6H5N (m/z 105) has been produced by atmospheric pressure chemical ionization (APCI) of benzene and clearly detected in the corresponding positive ion mass spectrum. Its elemental composition has been established by the mass shift at m/z 110 observed when measurements were carried out with hexadeuterated benzene. MS2 experiments performed in the ion‐trap analyzer, and guided ion beam (GIB) experiments on the reaction of the phenyl cation with nitrogen molecules, allow us to establish that the detected C6H5N ion is the benzenediazonium ion. To the best of our knowledge, this is the first report on the gas‐phase total synthesis of the benzenediazonium ion within the APCI source. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Protonated benzene, C6H, has been studied extensively to understand the structure and energy of a protonated organic molecule in the gas phase. The formation of C6H is either through direct protonation of benzene, i.e., chemical ionization, or through fragmentation of certain radical cations produced from electron ionization or photon ionization. We report a novel observation of C6H as a product ion formed in the collision‐induced dissociation (CID) of protonated benzamide and related molecules produced via electrospray ionization (ESI). The formation of C6H from these even‐electron precursor ions during the CID process, which has not been previously reported, is proposed to occur from the protonated molecules via a proton migration in a five‐membered ring intermediate followed by the cleavage of the mono‐substituent C? C bond and concurrent formation of an ion‐molecule complex. This unique mechanism has been scrutinized by examining some deuterated molecules and a series of structurally related model compounds. This finding provides a convenient mean to generate C6H, a reactive intermediate of considerable interest, for further physical or chemical investigation. Further studies indicate that the occurrence of C6H in liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) appears to be a rather common phenomenon for many compounds that contain ‘benzoyl‐type’ moieties. Hence, the observation of the C6H ion in LC/ESI‐MS/MS can be used as an informative fragmentation pathway which should facilitate the identification of a great number of compounds containing the ‘benzoyl‐type’ and similar structural features. These compounds are frequently present in food and pharmaceutical products as leachable impurities that require strict control and rapid elucidation of their identities. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
ASi (A = B and Al; n = 1–6) binary cluster anions were generated by laser ablation of samples composed of mixtures of Si and A (A = B and Al), and studied in the gas phase by tandem time‐of‐flight mass spectrometry. Some abundant ions are present in the mass spectrum, indicating that the clusters with these ions have stable structures. The structures of ASi clusters were investigated theoretically by the density functional theory (DFT) method and the energetically lowest‐lying structures were obtained. The binary clusters BSi and AlSi, with the same number of n, share different geometric structures except for ASi with n = 1 and 6, which have the same geometric structures in the ground state. For all the anionic clusters ASi, the lower spin state is lower in energy than the higher spin state in their optimized structures except for the linear ASi? anions, for which the triplet state is lower in energy than the singlet. Calculations of the bonding energy (BE), energy gain (Δ) and HOMO‐LUMO energy gaps confirm that the cluster ASi has a very stable structure, which agrees well with the experimental results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The mass spectrometric characterization of aqueous solutions of α‐ and β‐cyclodextrins (CDs) and o‐, m‐ and p‐coumaric acids (CAs) by negative ion electrospray ionization (ESI) indicates that the [CD+CA]? ions were sourced from the inclusion complex present in solution and from the anion attached to CD molecules formed in the spray processes. The anion adducts formed in the spray process contribute significantly to the signal intensity of an ionized inclusion complex thus overestimating the calculated stability constant (K) of solution‐phase complexes by one to two orders of magnitude. The relative intensities of anion adducts in mass spectra depend on the concentration ratio of the anion and the CD in spray droplets, while the relative intensity of the ionized inclusion complex depends on CD and CA concentrations in solutions and the value of K. Ion Mobility Spectrometry Mass Spectrometry [IMS‐MS] measurements show that the collision cross‐section (Ω) values of the [CD+CA]? or [(CD)2+CA]2? and [CD+CA] complex ions are 5–6% larger than or equal to CD? or [CD], respectively. Therefore, in the gas phase the anion adducts [CD+CA?] on cyclodextrin molecules possess the same conformations as the ionized inclusion complexes [CD+CA]?. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号