首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this paper, we propose an inverse inexact iteration method for the computation of the eigenvalue with the smallest modulus and its associated eigenvector for a large sparse matrix. The linear systems of the traditional inverse iteration are solved with accuracy that depends on the eigenvalue with the second smallest modulus and iteration numbers. We prove that this approach preserves the linear convergence of inverse iteration. We also propose two practical formulas for the accuracy bound which are used in actual implementation. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
For solving the large sparse linear complementarity problems, we establish modified modulus‐based matrix splitting iteration methods and present the convergence analysis when the system matrices are H+‐matrices. The optima of parameters involved under some scopes are also analyzed. Numerical results show that in computing efficiency, our new methods are superior to classical modulus‐based matrix splitting iteration methods under suitable conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The Chebyshev accelerated preconditioned modified Hermitian and skew‐Hermitian splitting (CAPMHSS) iteration method is presented for solving the linear systems of equations, which have two‐by‐two block coefficient matrices. We derive an iteration error bound to show that the new method is convergent as long as the eigenvalue bounds are not underestimated. Even when the spectral information is lacking, the CAPMHSS iteration method could be considered as an exponentially converging iterative scheme for certain choices of the method parameters. In this case, the convergence rate is independent of the parameters. Besides, the linear subsystems in each iteration can be solved inexactly, which leads to the inexact CAPMHSS iteration method. The iteration error bound of the inexact method is derived also. We discuss in detail the implementation of CAPMHSS for solving two models arising from the Galerkin finite‐element discretizations of distributed control problems and complex symmetric linear systems. The numerical results show the robustness and the efficiency of the new methods.  相似文献   

4.
Parallel iterative methods are powerful in solving large systems of linear equations (LEs). The existing parallel computing research results focus mainly on sparse systems or others with particular structure. Most are based on parallel implementation of the classical relaxation methods such as Gauss-Seidel, SOR, and AOR methods which can be efficiently carried out on multiprocessor system. In this paper, we propose a novel parallel splitting operator method in which we divide the coefficient matrix into two or three parts. Then we convert the original problem (LEs) into a monotone (linear) variational inequality problem (VI) with separable structure. Finally, an inexact parallel splitting augmented Lagrangian method is proposed to solve the variational inequality problem (VI). To avoid dealing with the matrix inverse operator, we introduce proper inexact terms in subproblems such that the complexity of each iteration of the proposed method is O(n2). In addition, the proposed method does not require any special structure of system of LEs under consideration. Convergence of the proposed methods in dealing with two and three separable operators respectively, is proved. Numerical computations are provided to show the applicability and robustness of the proposed methods.  相似文献   

5.
一类单调变分不等式的非精确交替方向法   总被引:1,自引:0,他引:1       下载免费PDF全文
交替方向法适合于求解大规模问题.该文对于一类变分不等式提出了一种新的交替方向法.在每步迭代计算中,新方法提出了易于计算的子问题,该子问题由强单调的线性变分不等式和良态的非线性方程系统构成.基于子问题的精确求解,该文证明了算法的收敛性.进一步,又提出了一类非精确交替方向法,每步迭代计算只需非精确求解子问题.在一定的非精确条件下,算法的收敛性得以证明.  相似文献   

6.
In this work, we consider numerical methods for solving a class of block three‐by‐three saddle‐point problems, which arise from finite element methods for solving time‐dependent Maxwell equations and some other applications. The direct extension of the Uzawa method for solving this block three‐by‐three saddle‐point problem requires the exact solution of a symmetric indefinite system of linear equations at each step. To avoid heavy computations at each step, we propose an inexact Uzawa method, which solves the symmetric indefinite linear system in some inexact way. Under suitable assumptions, we show that the inexact Uzawa method converges to the unique solution of the saddle‐point problem within the approximation level. Two special algorithms are customized for the inexact Uzawa method combining the splitting iteration method and a preconditioning technique, respectively. Numerical experiments are presented, which demonstrated the usefulness of the inexact Uzawa method and the two customized algorithms.  相似文献   

7.
潘春平 《计算数学》2022,44(4):481-495
本文针对求解大型稀疏非Hermitian正定线性方程组的HSS迭代方法,利用迭代法的松弛技术进行加速,提出了一种具有三个参数的超松弛HSS方法(SAHSS)和不精确的SAHSS方法(ISAHSS),它采用CG和一些Krylov子空间方法作为其内部过程,并研究了SAHSS和ISAHSS方法的收敛性.数值例子验证了新方法的有效性.  相似文献   

8.
In this paper we study inexact inverse iteration for solving the generalised eigenvalue problem A xM x. We show that inexact inverse iteration is a modified Newton method and hence obtain convergence rates for various versions of inexact inverse iteration for the calculation of an algebraically simple eigenvalue. In particular, if the inexact solves are carried out with a tolerance chosen proportional to the eigenvalue residual then quadratic convergence is achieved. We also show how modifying the right hand side in inverse iteration still provides a convergent method, but the rate of convergence will be quadratic only under certain conditions on the right hand side. We discuss the implications of this for the preconditioned iterative solution of the linear systems. Finally we introduce a new ILU preconditioner which is a simple modification to the usual preconditioner, but which has advantages both for the standard form of inverse iteration and for the version with a modified right hand side. Numerical examples are given to illustrate the theoretical results. AMS subject classification (2000)  65F15, 65F10  相似文献   

9.
We present a modified damped Newton method for solving large sparse linear complementarity problems, which adopts a new strategy for determining the stepsize at each Newton iteration. The global convergence of the new method is proved when the system matrix is a nondegenerate matrix. We then apply the matrix splitting technique to this new method, deriving an inexact splitting method for the linear complementarity problems. The global convergence of the resulting inexact splitting method is proved, too. Numerical results show that the new methods are feasible and effective for solving the large sparse linear complementarity problems.  相似文献   

10.
By an equivalent reformulation of the linear complementarity problem into a system of fixed‐point equations, we construct modulus‐based synchronous multisplitting iteration methods based on multiple splittings of the system matrix. These iteration methods are suitable to high‐speed parallel multiprocessor systems and include the multisplitting relaxation methods such as Jacobi, Gauss–Seidel, successive overrelaxation, and accelerated overrelaxation of the modulus type as special cases. We establish the convergence theory of these modulus‐based synchronous multisplitting iteration methods and their relaxed variants when the system matrix is an H + ‐matrix. Numerical results show that these new iteration methods can achieve high parallel computational efficiency in actual implementations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
正定反Hermite分裂(PSS)方法是求解大型稀疏非Hermite正定线性代数方程组的一类无条件收敛的迭代算法.将其作为不精确Newton方法的内迭代求解器,我们构造了一类用于求解大型稀疏且具有非Hermite正定Jacobi矩阵的非线性方程组的不精确Newton-PSS方法,并对方法的局部收敛性和半局部收敛性进行了详细的分析.数值结果验证了该方法的可行性与有效性.  相似文献   

12.
n this paper, we present an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax=λBx. We first formulate a version of inexact inverse subspace iteration in which the approximation from one step is used as an initial approximation for the next step. We then analyze the convergence property, which relates the accuracy in the inner iteration to the convergence rate of the outer iteration. In particular, the linear convergence property of the inverse subspace iteration is preserved. Numerical examples are given to demonstrate the theoretical results.  相似文献   

13.
This paper presents a globally convergent method for solving a general semi-infinite linear programming problem. Some important features of this method include: It can solve a semi-infinite linear program having an unbounded feasible region. It requires an inexact solution to a nonlinear subproblem at each iteration. It allows unbounded index sets and nondifferentiable constraints. The amount of work at each iteration k does not increase with k.  相似文献   

14.
We present a shifted skew-symmetric iteration method for solving the nonsymmetric positive definite or positive semidefinite linear complementarity problems. This method is based on the symmetric and skew-symmetric splitting of the system matrix, which has been adopted to establish efficient splitting iteration methods for solving the nonsymmetric systems of linear equations. Global convergence of the method is proved, and the corresponding inexact splitting iteration scheme is established and analyzed in detail. Numerical results show that the new methods are feasible and effective for solving large sparse and nonsymmetric linear complementarity problems.  相似文献   

15.
We consider the computation of an eigenvalue and corresponding eigenvector of a Hermitian positive definite matrix A , assuming that good approximations of the wanted eigenpair are already available, as may be the case in applications such as structural mechanics. We analyze efficient implementations of inexact Rayleigh quotient-type methods, which involve the approximate solution of a linear system at each iteration by means of the Conjugate Residuals method. We show that the inexact version of the classical Rayleigh quotient iteration is mathematically equivalent to a Newton approach. New insightful bounds relating the inner and outer recurrences are derived. In particular, we show that even if in the inner iterations the norm of the residual for the linear system decreases very slowly, the eigenvalue residual is reduced substantially. Based on the theoretical results, we examine stopping criteria for the inner iteration. We also discuss and motivate a preconditioning strategy for the inner iteration in order to further accelerate the convergence. Numerical experiments illustrate the analysis.  相似文献   

16.
基于一类带有参数theta的新方向, 提出了求解单调线性互补问题的宽邻 域路径跟踪内点算法, 且当theta=1时即为经典牛顿方向. 当取theta为与问题规模 n无关的常数时, 算法具有O(nL)迭代复杂性, 其中L是输入数据的长度, 这与经典宽邻 域算法的复杂性相同; 当取theta=\sqrt{n/\beta\tau}时, 算法具有O(\sqrt{n}L)迭代复杂性, 这里的\beta, \tau是邻域参数, 这与窄邻域算法的复杂性相同. 这是首次研究包括经典宽邻域路径跟踪算法的一类内点算法, 给出了统一的算法框架和收敛性分析方法.  相似文献   

17.
In this paper, we propose an inexact multi-block ADMM-type first-order method for solving a class of high-dimensional convex composite conic optimization problems to moderate accuracy. The design of this method combines an inexact 2-block majorized semi-proximal ADMM and the recent advances in the inexact symmetric Gauss–Seidel (sGS) technique for solving a multi-block convex composite quadratic programming whose objective contains a nonsmooth term involving only the first block-variable. One distinctive feature of our proposed method (the sGS-imsPADMM) is that it only needs one cycle of an inexact sGS method, instead of an unknown number of cycles, to solve each of the subproblems involved. With some simple and implementable error tolerance criteria, the cost for solving the subproblems can be greatly reduced, and many steps in the forward sweep of each sGS cycle can often be skipped, which further contributes to the efficiency of the proposed method. Global convergence as well as the iteration complexity in the non-ergodic sense is established. Preliminary numerical experiments on some high-dimensional linear and convex quadratic SDP problems with a large number of linear equality and inequality constraints are also provided. The results show that for the vast majority of the tested problems, the sGS-imsPADMM is 2–3 times faster than the directly extended multi-block ADMM with the aggressive step-length of 1.618, which is currently the benchmark among first-order methods for solving multi-block linear and quadratic SDP problems though its convergence is not guaranteed.  相似文献   

18.
本文在Bai的基础上提出改进的斜正规分裂(MSNS)和斜尺度化分裂(MSSS)迭代法,用以求解一类应用广泛的复对称线性系统,并证实MSNS和MSSS迭代法是无条件收敛的.通过利用一些Krylov子空间方法,本文给出相对应的非精确版本的MSNS(MSSS)方法.数值实验说明了所给方法的有效性.  相似文献   

19.
This paper presents a hybrid trust region algorithm for unconstrained optimization problems. It can be regarded as a combination of ODE-based methods, line search and trust region techniques. A feature of the proposed method is that at each iteration, a system of linear equations is solved only once to obtain a trial step. Further, when the trial step is not accepted, the method performs an inexact line search along it instead of resolving a new linear system. Under reasonable assumptions, the algorithm is proven to be globally and superlinearly convergent. Numerical results are also reported that show the efficiency of this proposed method.  相似文献   

20.
For exact Newton method for solving monotone semidefinite complementarity problems (SDCP), one needs to exactly solve a linear system of equations at each iteration. For problems of large size, solving the linear system of equations exactly can be very expensive. In this paper, we propose a new inexact smoothing/continuation algorithm for solution of large-scale monotone SDCP. At each iteration the corresponding linear system of equations is solved only approximately. Under mild assumptions, the algorithm is shown to be both globally and superlinearly convergent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号