首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
JIANG  Feng  QU  Jinqing  CHEN  Huanqin 《中国化学》2009,27(10):2079-2084
Novel chiral methylpropargyl esters bearing azobenzene groups, namely, 4‐[4′‐(benzyloxy)phenylazophenyl]‐ carbonyl‐(S)‐1‐methylpropargyl ester ( e ), 4‐[4′‐(n‐butyloxy)phenylazophenyl]carbonyl‐(S)‐1‐methylpropargyl ester ( f ), 4‐[4′‐(n‐hexyloxy)phenylazophenyl]carbonyl‐(S)‐1‐methylpropargyl ester ( g ), and 4‐[4′‐(n‐octyloxy)phenylazo‐ phenyl]carbonyl‐(S)‐1‐methylpropargyl ester ( h ) were synthesized and polymerized with Rh+(nbd)[η6‐C6H5B?‐ (C6H5)3] (nbd=norbornadiene) catalyst to give the corresponding polymers with moderate molecular weights (Mn=8.4×103–15.7×103) in good yields (76%? –?91%). The structures of polymers were illustrated by IR and NMR spectroscopies. Polymers were soluble in comment organic solvents including toluene, CHCl3 CH2Cl2, THF, and DMSO, while insoluble in diethyl ether, n‐hexane and methanol. Large optical rotations of polymer solutions demonstrated that all the polymers take a helical structure with a predominantly one‐handed screw sense in organic solvents.  相似文献   

2.
Optically active 1‐methylpropargyl esters bearing various substituents were polymerized with [(nbd)Rh]+6‐C6H5B(C6H5)3]? (nbd=norbornadiene) as a catalyst to afford the corresponding poly(1‐methylpropargyl ester)s with moderate molecular weights in good yields. The polymers have a cis‐stereoregular structure, which was determined by 1H NMR spectroscopy. Large optical rotations and clear CD signals demonstrated that all these polymers take on a helical structure with a predominantly one‐handed screw sense. The polymers exhibited large viscosity indices in the range 1.14–1.75. Chiral amplification was observed in R/S copolymerization. Conformational analysis revealed that the polymers form a tightly twisted helical structure with a dihedral angle of 70° at the single bond of the main chain.  相似文献   

3.
A chiral azobenzene‐containing N‐propargylamide monomer, that is, (R)‐2‐(4‐phenylazophenoxy)‐n‐prop‐2‐ynyl‐propionamide, was prepared and polymerized in the presence of a rhodium catalyst to yield an optically active polyacetylene. The 1H NMR analysis of the polymer indicated a predominant cis structure of the backbone (cis concentration = 80%); and the chiroptical property studies showed an enhanced optical rotatory power and a strong Cotton effect, indicating the formation of a secondary helical conformation. A reversible optical modulation of chiroptical properties of the polymer due to the reversible photoisomerization of the azobenzene was observed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6047–6054, 2006  相似文献   

4.
1‐Alkynes containing azobenzene mesogenic moieties [HC?C(CH2)9? O? ph? N?N? ph? O? R; R = ethyl ( 1 ), octyl ( 2 ), decyl ( 3 ), (S)‐2‐methylbutyl ( 4 ), or (S)‐1‐ethoxy‐1‐oxopropan‐2‐yl ( 5 ); ph = 1,4‐phenyl] were synthesized and polymerized in the presence of a Rh catalyst {(nbd)Rh+[B(C6H5)4]?; nbd = 2,5‐norbornadiene} to yield a series of liquid‐crystalline polymers in high yields (e.g., >75%). These polymers had moderate molecular weights (number‐average molecular weight ≥ 12,000), high cis contents in the main chain (up to 83%), good thermal stability, and good solubility in common organic solvents, such as tetrahydrofuran, chloroform, and dichloromethane. These polymers were thoroughly characterized by a combination of infrared, nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, polarized optical microscopy, and two‐dimensional wide‐angle X‐ray diffraction techniques. The liquid‐crystalline behavior of these polymers was dependent on the tail group attached to the azobenzene structure. Poly‐ 1 , which had the shortest tail group, that is, an ethyl group, showed a smectic A mesophase, whereas poly‐ 2 , poly‐ 3 , and poly‐ 5 , which had longer or chiral tail groups, formed smectic C mesophases, and poly‐ 4 , which had another chiral group attached to the azobenzene structure, showed a chiral smectic C mesophase in both the heating and cooling processes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4532–4545, 2006  相似文献   

5.
Chiral methylpropargyl ester monomers containing amino acid moieties, N-(tert-butoxycarbonyl)-l-alanine (R)-1-methylpropargyl ester (1), N-(benzyloxycarbonyl)-l-valine (R)-1-methylpropargyl ester (2), and N-(tert-butoxycarbonyl)-l-O-cyclohexyl-l-glutamic acid (R)-1-methylpropargyl ester (3) were synthesized and polymerized with (nbd)Rh+[η6-C6H5B(C6H5)3] to give the corresponding polymers with number-average molecular weights ranging from 32 700 to 64 100 in 84-85% yields. The polymers were soluble in toluene, CHCl3, CH2Cl2, THF, DMF, and DMSO, but insoluble in hexane, diethyl ether, and MeOH. The specific rotation and circular dichroism (CD) spectroscopic studies revealed that poly(1)-poly(3) took predominantly one-handed helical structures in the solvents, wherein the degree of one-handedness and tightness of the helix depended on the solvent. The helical structure of the polymers was stable to the addition of MeOH and heat.  相似文献   

6.
Structural and retrostructural analysis of chiral, nonracemic ( poly [(3,4,5)dm8G1‐1EN] ), and achiral ( poly[(3,4,5)12G1‐1EN] ) poly(1‐naphthylacetylene)s demonstrates new design principles for helical dendronized polyarylacetylenes. The oblate cylindrical dendronized polymers self‐organize in a c2mm centered rectangular columnar (Φr‐c) lattice. An all cis‐polyene backbone microstructure with very high cisoid character is introduced to rationalize features from small‐ and wide‐angle X‐ray diffraction experiments. More compact helical conformations are ideal for efficient communication or amplification of chirality over long distances. Peripheral chiral tails select a preferred helical screw sense of the polyene backbone. In solution, the preferred helical conformation persists over a wide temperature range. In bulk, the naphthyl moiety facilitates a longer correlation length for helical order compared to an analogous minidendritic poly(phenylacetylene). These attributes suggest that the naphthyl moiety may be better suited for expressing helical chirality in monolayer domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4974–4987, 2007  相似文献   

7.
Triphenylene‐containing 1‐decynes with different alkyl chain lengths and their polymers are synthesized and the effects of the structural variables on their mesomorphic properties are investigated. The monomers [HC?C(CH2)8CO2C18H6 (OCmH2m+1)5; m = 4–9] are prepared by consecutive etherization, coupling, and esterification reactions. The monomers form columnar phases at room temperature. The polymerizations of the monomers are effected by [Rh(nbd)Cl]2, producing soluble polymers in high yields (up to 84%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, TGA, DSC, POM, and XRD analyses. All the polymers are thermally stable, losing little of their weights when heated to 300 °C. The isotropization temperature of the polymers increases initially with the length of alkyl chain but decreases on further extension. Although the polymers with shorter and longer alkyl chain lengths adopt a homogeneous hexagonal columnar structure, those with intermediate ones form mesophases with mixed structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2960–2974, 2008  相似文献   

8.
The synthesis of 2‐ethynyl‐9‐substituted carbazole and 3‐ethynyl‐9‐substituted carbazole monomers containing first‐generation chiral and achiral dendritic (i.e., minidendritic) substituents, 2‐ethynyl‐9‐[3,4,5‐tris(dodecan‐1‐yloxy)benzyl]carbazole (2ECz), 3‐ethynyl‐9‐[3,4,5‐tris(dodecan‐1‐yloxy)benzyl]carbazole (3ECz), 2‐ethynyl‐9‐{3,4,5‐tris[(S)‐2‐methylbutan‐1‐yloxy]benzyl}carbazole (2ECz*), and 3‐ethynyl‐9‐{3,4,5‐tris[(S)‐2‐methylbutan‐1‐yloxy]benzyl}carbazole (3ECz*), is presented. All monomers were polymerized and copolymerized by stereospecific polymerization to produce cis‐transoidal soluble stereoisomers. A structural analysis of poly(2ECz), poly(2ECz*), poly(3ECz), poly(3ECz*), poly(2ECz*‐co‐2ECz), and poly(3ECz*‐co‐3ECz) by a combination of techniques, including 1H NMR, ultraviolet–visible, and circular dichroism spectroscopy, thermal optical polarized microscopy, and X‐ray diffraction experiments, demonstrated that these polymers had a helical conformation that produced cylindrical macromolecules exhibiting chiral and achiral nematic phases. Individual chains of these cylindrical macromolecules were visualized by atomic force microscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3509–3533, 2002  相似文献   

9.
The gas permeability and n‐butane solubility in glassy poly(1‐trimethylgermyl‐1‐propyne) (PTMGP) are reported. As synthesized, the PTMGP product contains two fractions: (1) one that is insoluble in toluene and soluble only in carbon disulfide (the toluene‐insoluble polymer) and (2) one that is soluble in both toluene and carbon disulfide (the toluene‐soluble polymer). In as‐cast films, the gas permeability and n‐butane solubility are higher in films prepared from the toluene‐soluble polymer (particularly in those films cast from toluene) than in films prepared from the toluene‐insoluble polymer and increase to a maximum in both fractions after methanol conditioning. For example, in as‐cast films prepared from carbon disulfide, the oxygen permeability at 35 °C is 330 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 73 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. After these films are conditioned in methanol, the oxygen permeability increases to 5200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 6200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. The rankings of the fractional free volume and nonequilibrium excess free volume in the various PTMGP films are consistent with the measured gas permeability and n‐butane solubility values. Methanol conditioning increases gas permeability and n‐butane solubility of as‐cast PTMGP films, regardless of the polymer fraction type and casting solvent used, and minimizes the permeability and solubility differences between the various films (i.e., the permeability and solubility values of all conditioned PTMGP films are similar). © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2228–2236, 2002  相似文献   

10.
1‐Pentynes containing different amino acid moieties and pendant terminal groups {HC?C(CH2)2CONHC(R′)HCO2CH3, where R′ = CH3, CH2CH(CH3)2, CH2C6H5, and HC?C(CH2)2CONHC[CH2CH(CH2)3]HCO2‐(1R,2S,5R)‐(+)‐menthol} have been designed and synthesized. The polymerizations of the monomers are effected by organorhodium catalysts, giving soluble polymers with moderate molecular weights in satisfactory yields. The structures and properties of the polymers have been characterized and evaluated with infrared, nuclear magnetic resonance, thermogravimetric analysis, circular dichroism, and ultraviolet analyses. All the polymers are thermally stable (≥300 °C) and show strong circular dichroism signals at ~310 nm because of the helicity of the polyene backbone. The circular dichroism and ultraviolet absorptions of the polymers can be tuned with a solvent. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6190–6201, 2006  相似文献   

11.
Diarylacetylene monomers containing substituted biphenyl ( 1a – f ) and anthryl ( 1g ) groups were synthesized and then polymerized with TaCl5n‐Bu4Sn catalyst to produce the corresponding poly(diarylacetylene)s ( 2a – g ). Polymers 2a – f were soluble in common organic solvents such as cyclohexane, toluene, and chloroform. According to thermogravimetric analysis, the onset temperatures of weight loss of the polymers were over 400 °C in air, indicating considerably high thermal stability. Free‐standing membranes 2a and 2c – e were prepared by the solution casting method. Desilylation of Si‐containing membrane 2c was carried out with trifluoroacetic acid to afford 3c . All the polymer membranes, especially those having twisted biphenyl groups, exhibited high gas permeability; for example, their oxygen permeability (PO 2) values ranged from 130 to 1400 barrers. Membrane 2d having two chlorine atoms in the biphenyl group showed the highest gas permeability (PO 2 = 1400 barrers) among the present polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 861–868, 2010  相似文献   

12.
A group of new amphiphilic poly(phenylacetylene)s bearing polar oligo(ethylene oxide) pendants, poly{4‐[2‐(2‐hydroxyethoxy)ethoxy]phenylacetylene} ( 1 ), poly(4‐{2‐[2‐(2‐hydroxyethoxy)‐ethoxy]ethoxy}phenylacetylene) ( 2p ), poly(3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 2m ), poly(4‐{2‐[2‐(2‐methanesulfonyloxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 3 ), poly(4‐{2‐[2‐(p‐toluenesulfonyloxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 4 ), poly(4‐{2‐[2‐(2‐trimethylsilyloxy‐ethoxy)ethoxy] ethoxy}phenylacetylene) ( 5 ), and poly(4‐{2‐[2‐(2‐chloroethoxy)ethoxy]ethoxy}phenylacetylene) ( 6 ), were synthesized with organorhodium complexes as the polymerization catalysts. The structures and properties of the polymers were characterized with IR, UV, NMR, and thermogravimetric analysis. 1 , 2p , and 2m , the three polymers containing pendants with hydroxyl groups, were oligomeric or insoluble. The organorhodium complexes worked well for the polymerization of the monomers without hydroxyl groups, giving soluble polymers 3 – 6 with a weight‐average molecular weight up to ~160 × 103 and a yield up to 99%. Z‐rich polymers 3 – 6 could be prepared by judicious selections of the catalyst under optimal conditions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1153–1167, 2006  相似文献   

13.
Optically active poly(m‐phenylene)s substituted with chiral oxazoline derivatives have been synthesized by the nickel‐catalyzed Yamamoto coupling reaction of optically active (S)‐4‐benzyl‐2‐(3,5‐dihalidephenyl)oxazoline derivatives (X = Br or I). The structures and chiroptical properties of the polymers were characterized by spectroscopic methods and thermal gravimetric analyses. The polymers showed higher absolute optical specific rotation values than their corresponding monomer, and showed a Cotton effect at transition region of conjugated main chain. The optical activities of the polymers should be attributed to the higher order structure such as helical conformations. Moreover, the helical conformation could be induced by addition of metal salts into polymer solutions. The polymers showed good thermal stabilities, which was attributable to the oxazoline side chains. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
A novel chiral N‐propargylsulfamide monomer ( 1a ) and its enantiomer ( 1b ) were synthesized and polymerized with (nbd)Rh+B?(C6H5)4 as a catalyst providing poly(1) (poly( 1a ) and poly( 1b )) in high yields (≥99%). Poly(1) could take stable helices in less polar solvents (chloroform and THF), demonstrated by strong circular dichroism signals and UV–vis absorption peaks at about 415 nm and the large specific rotations; but in more polar solvents including DMF and DMSO, poly(1) failed to form helix. Quantitative evaluation with anisotropy factor showed that the helical screw sense had a relatively high thermal stability. These results together with the IR spectra measured in solvents showed that hydrogen bonding between the neighboring sulfamide groups is one of the main driving forces for poly(1) to adopt stable helices. In addition, copolymerization of monomer 1a and monomer 2 was conducted, the solubility of poly(1) was improved drastically. However, the copolymerization had adverse effects on the formation of stable helices in the copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 500–508, 2007  相似文献   

15.
Novel chiral N‐propargylphosphonamidate monomers (HC?CCH2NHP(?O)R? O? menthyl, 1 : R = CH3, 2 : R = C2H5, 3 : R = n‐C3H7, 4 : R = Ph) were synthesized by the reaction of the corresponding phosphonic dichlorides with menthol and propargylamine. Pairs of diastereomeric monomers 1 – 4 with different ratios were obtained due to the chiral P‐center and menthyl group. One diastereomer could be separated from another one in the cases of monomers 1 and 2 . Polymerization of 1 – 4 with (nbd)Rh+6‐C6H5B?(C6H5)3] as a catalyst in CHCl3 gave the polymers with number‐average molecular weights ranging from 5000 to 12,000 in 65–85%. Poly( 1 )–poly( 4 ) exhibited quantitative cis contents, and much larger specific rotations than 1 – 4 did in CHCl3. The polymers showed an intense Cotton effect around 325 nm based on the conjugated polyacetylene backbone. It was indicated that the polymers took a helical structure with predominantly one‐handed screw sense, and intramolecular hydrogen bonding between P?O and N? H of the polymers contributed to the stability of the helical structure. Poly( 1a ) and poly( 2a ) decreased the CD intensity upon raising CH3OH content in CHCl3/CH3OH. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1515–1524, 2007  相似文献   

16.
A series of 1‐chloro‐2‐arylacetylenes [Cl‐C?C‐Ar, Ar = C6H5 ( 1 ), C6H4pi Pr ( 2 ), C6H4p‐Oi Pr ( 3 ), C6H4p‐NHC(O)Ot Bu ( 4 ), and C6H4oi Pr ( 5 )] were polymerized using (tBu3P)PdMeCl/silver trifluoromethanesulfonate (AgOTf) and MoCl5/SnBu4 catalysts. The corresponding polymers [poly( 1 )–poly( 5 )] with weight‐average molecular weights of 6,500–690,000 were obtained in 10–91% yields. THF‐insoluble parts, presumably high‐molecular weight polymers, were formed together with THF‐soluble polymers by the Pd‐catalyzed polymerization. The Pd catalyst polymerized nonpolar monomers 1 and 2 to give the polymers in yields lower than the Mo catalyst, while the Pd catalyst polymerized polar monomers 3 and 4 to give the corresponding polymers in higher yields. The 1H NMR and UV–vis absorption spectra of the polymers indicated that the cis‐contents of the Pd‐based polymers were higher than those of the Mo‐based polymers, and the conjugation length of the Pd‐based polymers was shorter than that of the Mo‐based polymers. Pd‐based poly( 5 ) emitted fluorescence most strongly among poly( 1 )–poly( 5 ). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 382–388  相似文献   

17.
2,2,6,6‐Tetramethyl‐1‐piperidinyloxy (TEMPO)‐ and 2,2,5,5‐tetramethyl‐1‐pyrrolidinyloxy (PROXYL)‐containing (R)‐1‐methylpropargyl TEMPO‐4‐carboxylate ( 1 ), (R)‐1‐methylpropargyl PROXYL‐3‐carboxylate ( 2 ), (rac)‐1‐methylpropargyl PROXYL‐3‐carboxylate ( 3 ), (S)‐1‐propargylcarbamoylethyl TEMPO‐4‐carboxylate ( 4 ), and (S)‐1‐propargyloxycarbonylethyl TEMPO‐4‐carboxylate ( 5 ) (TEMPO, PROXYL) were polymerized to afford novel polymers containing the TEMPO and PROXYL radicals at high densities. Monomers 1–3 and 5 provided polymers with moderate number‐average molecular weights of 8200–140,900 in 49–97% yields in the presence of (nbd)Rh+[η6‐C6H5B?(C6H5)3], whereas 4 gave no polymer with this catalyst but gave polymers possessing low Mn (3800–7500) in 56–61% yield with [(nbd)RhCl]2‐Et3N. Poly( 1 ), poly( 2 ), and poly( 4 ) took a helical structure with predominantly one‐handed screw sense in THF and CHCl3 as well as in film state. The helical structure of poly( 1 ) and poly( 2 ) was stable upon heating and addition of MeOH, whereas poly( 4 ) was responsive to heat and solvents. All of the free radical‐containing polymers displayed the reversible charge/discharge processes, whose capacities were in a range of 43.2–112 A h/kg. In particular, the capacities of poly( 2 )–poly( 5 )‐based cells reached about 90–100% of the theoretical values regardless of the secondary structure of the polymer, helix and random. Poly( 1 ), poly( 2 ), and poly( 4 ) taking a helical structure exhibited better capacity tolerance towards the increase of current density than nonhelical poly( 3 ) and poly( 5 ) did. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5431–5445, 2007  相似文献   

18.
Poly(1‐alkyne)s containing azobenzene pendant groups with different lengths of the spacer and terminal alkyloxy group {? [HC?C(CH2)mOCO? C6H4? N?N? C6H4? OCpH2p+1]n? , where m = 1, 2, 3, or 9 and p = 4, 7, or 12} were synthesized in satisfactory yields with the [Rh(nbd)Cl]2–Et3N catalyst. All the polymers were soluble in common organic solvents such as CHCl3 and tetrahydrofuran. Their structures and properties were characterized and evaluated with IR, NMR, thermogravimetric analysis, UV, and optical‐limiting and nonlinear optical analyses. All the polymers were thermally stable and decomposed at temperatures as high as ~300 °C. The optical‐limiting and nonlinear optical properties of the polymers were sensitive to their molecular structures. Polymers having shorter spacer lengths and longer terminal groups showed better performances and larger third‐order nonlinear optical susceptibility (up to 1.34 × 10?10 esu). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2346–2357, 2006  相似文献   

19.
This article presents two novel artificial helical polymers, substituted polyacetylenes with urea groups in side chains. Poly( 4 ) and poly( 5 ) can be obtained in high yields (≥97%) and with moderate molecular weights (11,000–14,000). Poly( 4 ) contains chiral centers in side chains, and poly( 5 ) is an achiral polymer. Both of the two polymers adopted helical structures under certain conditions. More interestingly, poly( 4 ) exhibited large specific optical rotations, resulting from the predominant one‐handed screw sense. The helical conformation in poly( 5 ) was stable against heat, while poly( 4 ) underwent conformational transition from helix to random coil upon increasing temperature from 0 to 55 °C. Solvents had considerable influence on the stability of the helical conformation in poly( 4 ). The screw sense adopted by the helices was also largely affected by the nature of the solvent. Poly( 4 ‐co‐ 5 )s formed helical conformation and showed large optical rotations, following the Sergeants and Soldiers rule. By comparing the present two polymers (with one ? N? H groups) with the three polymers previously reported (with two ? N? H groups in side chains), the nature of the hydrogen bonds formed between the neighboring urea groups played big roles in the formation of stable helical conformation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4112–4121, 2008  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号