首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hetero‐arm star polymer, polystyrene‐poly(N‐isopropylacrylamide)‐ poly(2‐(dimethylamino)ethylmethacrylate) (PSt‐PNIPAM‐PDMAEMA), was synthesized by “clicking” the alkyne group at the junction of PSt‐b‐PNIPAM diblock copolymer onto the azide end‐group of PDMAEMA homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. PSt‐PNIPAM‐PDMAEMA micelles with PSt block as core and PNIPAM and PDMAEMA blocks as shell were formed when adding the copolymer solution in THF into 10 folds of water. Lower critical solution temperature (LCST) of PNIPAM and PDMAEMA homopolymer is 32 °C for PNIPAM and 40 to 50 °C for PDMAEMA, respectively. Upon continuous heating through their LCSTs, PSt‐PNIPAM‐PDMAEMA core‐shell micelles exhibited two‐stage thermally induced collapse. The first‐stage collapse, from 20 to 34 °C, is ascribed to the shrinkage of PNIPAM chains; and the second‐stage collapse, from 38 to 50 °C, is due to the shrinkage of PDMAEMA chains. Dynamic light scattering was used to confirm the double phase transitions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 786–796, 2009  相似文献   

2.
Hetero‐arm star ABC‐type terpolymers, poly(methyl methacrylate)‐polystyrene‐poly(tert‐butyl acrylate) (PMMA‐PS‐PtBA) and PMMA‐PS‐poly(ethylene glycol) (PEG), were prepared by using “Click” chemistry strategy. For this, first, PMMA‐b‐PS with alkyne functional group at the junction point was obtained from successive atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMP) routes. Furthermore, PtBA obtained from ATRP of tBA and commercially available monohydroxyl PEG were efficiently converted to the azide end‐functionalized polymers. As a second step, the alkyne and azide functional polymers were reacted to give the hetero‐arm star polymers in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine ( PMDETA) in DMF at room temperature for 24 h. The hetero‐arm star polymers were characterized by 1H NMR, GPC, and DSC. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5699–5707, 2006  相似文献   

3.
A series of well‐defined three‐arm star poly(ε‐caprolactone)‐b‐poly(acrylic acid) copolymers having different block lengths were synthesized via the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, three‐arm star poly(ε‐caprolactone) (PCL) (Mn = 2490–7830 g mol?1; Mw/Mn = 1.19–1.24) were synthesized via ROP of ε‐caprolactone (ε‐CL) using tris(2‐hydroxyethyl)cynuric acid as three‐arm initiator and stannous octoate (Sn(Oct)2) as a catalyst. Subsequently, the three‐arm macroinitiator transformed from such PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBuA) to construct three‐arm star PCL‐b‐PtBuA copolymers (Mn = 10,900–19,570 g mol?1; Mw/Mn = 1.14–1.23). Finally, the three‐arm star PCL‐b‐PAA copolymer was obtained via the hydrolysis of the PtBuA segment in three‐arm star PCL‐b‐PtBuA copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance (1H NMR), and Fourier transform infrared spectroscopy. The aggregates of three‐arm star PCL‐b‐PAA copolymer were studied by the determination of critical micelles concentration and transmission electron microscope. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
Well‐defined mikto‐topology star polystyrene composed of one cyclic arm and four linear arms was synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu‐catalyzed azide‐alkyne cycloaddition (CuAAC) click reaction. First, the bromine‐alkyne α,ω‐linear polystyrenes containing four hydroxyl groups protected with acetone‐based ketal groups were synthesized by ATRP of styrene using a designed initiator. Then, the bromine end‐group was converted to the azide and the linear polystyrene was cyclized intra‐molecularly by the CuAAC reaction. The four hydroxyl groups were released by deprotection and then esterified with 2‐bromoisobutyryl bromide to produce a cyclic polymer bearing four ATRP initiating units. By subsequent ATRP of styrene to grow linear polymers with the cyclic polystyrene as a macroinitiator, the mikto‐topology star polymers were prepared. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
The click chemistry strategy is successfully applied for the preparation of three‐arm star (A3) ring opening metathesis polymers. A well‐defined monoazide end‐functionalized poly(N‐ethyl oxanorbornene) and a poly(N‐butyl oxanorbornene) obtained via ring opening metathesis polymerization using first generation Grubbs' catalyst are simply clicked with the trisalkyne core affording the synthesis of target star polymers. The obtained star polymers are characterized via nuclear magnetic resonance spectroscopy and gel permeation chromatography (GPC). The deconvolution analyses of GPC traces reveal that the click reaction efficiency for the star formation strongly depends on the chemical nature and the molecular weight of ROM polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2344–2351, 2009  相似文献   

6.
During the last years, the field of drug delivery has experienced a growing interest toward the so‐called thermo‐responsive polymers: synthetic materials that, due to the specific hydrophilic–lipophilic balance of their repeating units, exhibit a lower critical solution temperature (LCST) in water associated to a characteristic coil–globule transition. In this work, thermo‐responsive amphiphilic block copolymers are synthesized via reversible addition‐fragmentation transfer (RAFT) polymerization starting from thermo‐responsive monomers and a hydrophobic biodegradable macromonomer, oligo(caprolactone)methacrylate (CL3MA), produced via ring opening polymerization (ROP). The obtained copolymers exhibit an interesting self‐assembly behavior leading to nanoparticles (NPs) as long as temperature is kept below the LCST. Otherwise, once this value is overcome, the destabilization of the NPs causes the formation of hydrophobic superstructures that enhance the release of an entrapped lipophilic drug. This characteristic behavior has been systematically studied and related to the copolymer structure. In particular, the self‐assembly behavior as well as temperature‐triggered NP destabilization have been related to the relative length of the two blocks constituting the copolymers and to their hydrophilic–lipophilic balance (HLB). Finally, the efficacy of the thermo‐responsive triggered drug release has been tested in the case of Paclitaxel (PTX). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2919–2931  相似文献   

7.
Boronic acid end‐functionalized polycaprolactone (PCL) polymers were synthesized by ring‐opening polymerization using a pinacol boronate ester‐containing (Bpin) initiator. The polymerization provides access to boron‐terminated polymers (i.e. Bpin‐PCL‐OH) with narrow molecular weight distributions (PDI = 1.09). Postsynthetic manipulation of the polymer's terminal hydroxyl group by copper‐catalyzed azide‐alkyne cycloaddition chemistry provides a series of bis end‐functionalized polymers with significant structural diversity at the termini. Deprotection of the boronate ester end group was accomplished with an acidic solid phase DOWEX resin. The boronate ester deprotection methodology does not result in hydrolysis of the polymeric backbone. The boronic acid‐tipped polymers were converted into star polymer assemblies using thermal dehydration and ligand‐facilitated trimerization. Thermal dehydration of (HO)2B‐PCL‐OAc to the corresponding boroxine‐based star polymer assembly was inefficient and lead to degradation products. Ligand‐facilitated trimerization using either pyridine or 7‐azaindole as the Lewis base was efficient and mild. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
Amphiphilic cationic poly(ethylene oxide)‐S(polylysine)‐poly(d ,l ‐lactide) (mPEO‐S(CKn)‐PLA) tri‐arm star copolymers were synthesized by a combination of ring opening polymerization (ROP) and a thiol–disulfide exchange. The mPEO‐S(CKn)‐PLA copolymers were found to be non‐cytotoxic and could effectively condense GFP plasmid DNA into nanometer‐sized complexes, as characterized by dynamic light scattering (DLS), suitable for endocytotic cellular uptake. In vitro DNA transfection studies showed that the amphiphilic structure is capable of DNA transfection and GFP expression. Addition of chloroquine into the medium further enhanced the DNA transfection efficiency. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 635–644  相似文献   

9.
Self‐assembled thermo‐ and pH‐responsive poly(acrylic acid)‐b‐poly(N‐isopropylacrylamide) (PAA‐b‐PNIPAM) micelles for entrapment and release of doxorubicin (DOX) was described. Block copolymer PAA‐b‐PNIPAM associated into core‐shell micelles in aqueous solution with collapsed PNIPAM block or protonated PAA block as the core on changing temperature or pH. Complexation of DOX with PAA‐b‐PNIPAM triggered by the electrostatic interaction and release of DOX from the complexes due to the changing of pH or temperature were studied. Complex micelles incorporated with DOX exhibited pH‐responsive and thermoresponsive drug release profile. The release of DOX from micelles was suppressed at pH 7.2 and accelerated at pH 4.0 due to the protonation of carboxyl groups. Furthermore, the cumulative release of DOX from complex micelles was enhanced around LCST ascribed to the structure deformation of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5028–5035, 2008  相似文献   

10.
The syntheses of well‐defined 7‐arm and 21‐arm poly(N‐isopropylacrylamide) (PNIPAM) star polymers possessing β‐cyclodextrin (β‐CD) cores were achieved via the combination of atom transfer radical polymerization (ATRP) and click reactions. Heptakis(6‐deoxy‐6‐azido)‐β‐cyclodextrin and heptakis[2,3,6‐tri‐O‐(2‐azidopropionyl)]‐β‐cyclodextrin, β‐CD‐(N3)7 and β‐CD‐(N3)21, precursors were prepared and thoroughly characterized by nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. A series of alkynyl terminally functionalized PNIPAM (alkyne‐PNIPAM) linear precursors with varying degrees of polymerization (DP) were synthesized via atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide using propargyl 2‐chloropropionate as the initiator. The subsequent click reactions of alkyne‐PNIPAM with β‐CD‐(N3)7 and β‐CD‐(N3)21 led to the facile preparation of well‐defined 7‐arm and 21‐arm star polymers, namely β‐CD‐(PNIPAM)7 and β‐CD‐(PNIPAM)21. The thermal phase transition behavior of 7‐arm and 21‐arm star polymers with varying molecular weights were examined by temperature‐dependent turbidity and micro‐differential scanning calorimetry, and the results were compared to those of linear PNIPAM precursors. The anchoring of PNIPAM chain terminal to β‐CD cores and high local chain density for star polymers contributed to their considerably lower critical phase separation temperatures (Tc) and enthalpy changes during phase transition as compared with that of linear precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 404–419, 2009  相似文献   

11.
Using an in situ‐generated calcium‐based initiating species derived from pentaerythritol, the bulk synthesis of well‐defined four‐arm star poly(L ‐lactide) oligomers has been studied in detail. The substitution of the traditional initiator, stannous octoate with calcium hydride allowed the synthesis of oligomers that had both low PDIs and a comparable number of polymeric arms (3.7–3.9) to oligomers of similar molecular weight. Investigations into the degree of control observed during the course of the polymerization found that the insolubility of pentaerythritol in molten L ‐lactide resulted in an uncontrolled polymerization only when the feed mole ratio of L ‐lactide to pentaerythritol was 13. At feed ratios of 40 and greater, a pseudoliving polymerization was observed. As part of this study, in situ FT‐Raman spectroscopy was demonstrated to be a suitable method to monitor the kinetics of the ring‐opening polymerization of lactide. The advantages of using this technique rather than FTIR‐ATR and 1H NMR for monitoring L ‐lactide consumption during polymerization are discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4736–4748, 2009  相似文献   

12.
The systemic investigation of the structural impacts of side chains on the pH‐ and thermo‐responsiveness of tertiary amine functionalized poly(l ‐glutamate)s (TA‐PGs) was carried out. The TA‐PGs polymers were effectively synthesized by Cu(I)‐catalyzed azide‐alkyne cycloaddition click reaction of azido tertiary amines with poly(γ‐propargyl‐l ‐glutamate) (PPLG). Turbimetric measurements were performed to characterize the pH‐ and temperature‐induced phase transition of TA‐PGs in aqueous solution, which suggested a structural dependence of the properties on the N‐substituted groups and the “linkers” between 1,2,3‐triazole ring and the tertiary amine groups in the side chains. In detail, the pH responsive properties of TA‐PGs were basically determined by the hydrophobicity of the N‐substituted groups in the side chains and the pH transition point (pHt) decreased as the increasing hydrophobicity of the N‐substituted groups, while the temperature‐responsiveness of TA‐PGs were affected by either the N‐substituted groups or the “linkers.” TA‐PGs with a moderate N‐substituted amine group (e.g., DEA, PR, and PD) or a branched “linker” (e.g., iso‐propylene and 2‐methylpropylene group) were more likely to express the LCST‐type phase transition tuned by pH variation. These structure–property relationships revealed in this study would help to develop the applications of TA‐PGs in smart drug delivery systems. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 671–679  相似文献   

13.
ABC type miktoarm star copolymer with polystyrene (PS), poly(ε‐caprolactone) (PCL) and poly(ethylene glycol) (PEG) arms was synthesized using controlled polymerization techniques in combination with thiol‐ene and copper catalyzed azide‐alyne “click” reactions (CuAAC) and characterized. For this purpose, 1‐(allyloxy)‐3‐azidopropan‐2‐ol was synthesized as the core component in a one‐step reaction with high yields (96%). Independently, ω‐thiol functionalized polystyrene (PS‐SH) was synthesized in a two‐step protocol with a very narrow molecular weight distribution. The bromo end function of PS obtained by atom transfer radical polymerization was first converted to xanthate function and then reacted with 1, 2‐ethandithiol to yield desired thiol functional polymer (PS‐SH). The obtained polymer was grafted onto the core by thiol‐ene click chemistry. In the following stage, ε‐caprolactone monomer was polymerized from the core by ring opening polymerization (ROP) using tin octoate as catalyst through hydroxyl groups to form the second arm. Finally, PEG‐acetylene, which was simply synthesized by the esterification of Me‐PEG and 5‐pentynoic acid, was clicked onto the core through azide groups present in the structure. The intermediates at various stages and the final miktoarm star copolymer were characterized by 1H NMR, FTIR, and GPC measurements. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
A novel double brush‐shaped copolymer with amphiphilic polyacrylate‐b‐poly(ethylene glycol)‐b‐poly acrylate copolymer (PA‐b‐PEG‐b‐PA) as a backbone and thermosensitive poly(N‐isopropylacrylamide) (PNIPAM) long side chains at both ends of the PEG was synthesized via an atom transfer radical polymerization (ATRP) route, and the structure was confirmed by FTIR, 1H NMR, and SEC. The thermosensitive self‐assembly behavior was examined via UV‐vis, TEM, DLS, and surface tension measurements, etc. The self‐assembled micelles, with low critical solution temperatures (LCST) of 34–38 °C, form irregular fusiform and/or spherical morphologies with single, double, and petaling cores in aqueous solution at room temperature, while above the LCST the micelles took on more regular and smooth spherical shapes with diameter ranges from 45 to 100 nm. The micelle exhibits high stabilities even in simulated physiological media, with low critical micellization concentration (CMC) up to 5.50, 4.89, and 5.05 mg L?1 in aqueous solution, pH 1.4 and 7.4 PBS solutions, respectively. The TEM and DLS determination reveled that the copolymer micelle had broad size distribution below its LCST while it produces narrow and homogeneous size above the LCST. The cytotoxicity was investigated by MTT assays to elucidate the application potential of the as‐prepared block polymer brushes as drug controlled release vehicles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

16.
Amphiphilic BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH diblock and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐block‐PLA‐OH triblock copolymers incorporating thermoresponsive poly(ethylene oxide‐stat‐propylene oxide) (PEO‐stat‐PPO) blocks were prepared by ring‐opening polymerization of lactide (LA) initiated by macroinitiators formed from treating BuO‐(PEO‐stat‐PPO)‐OH and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH with AlEt3. MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH was prepared by coupling MeO‐PEO‐OH and HO‐(PEO‐stat‐PPO)‐OH, followed by chromatographic purification. The cloud points of 0.2% aqueous solutions are between 36 and 46 °C for the diblock copolymers that contain a 50 wt % EO thermoresponsive block and 78 °C for the triblock copolymer that contains a 75 wt % EO thermoresponsive block. Variable temperature 1H NMR spectra recorded on D2O solutions of the diblock copolymers display no PLA resonances below the cloud point and fairly sharp PLA resonances above the cloud point, suggesting that desolvation of the thermoresponsive block increases the miscibility of the two blocks. Preliminary characterization of the micelles formed in aqueous solutions of BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH conducted using laser scanning confocal microscopy and pulsed gradient spin echo NMR point to significant changes in the size of the micellar aggregates as a function of temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5156–5167, 2005  相似文献   

17.
Well‐defined AB3‐type miktoarm star‐shaped polymers with cholic acid (CA) core were fabricated with a combination of “click” chemistry and ring opening polymerization (ROP) methods. Firstly, azide end‐functional poly(ethylene glycol) (mPEG), poly(methyl methacrylate) (PMMA), polystyrene (PS), and poly(ε‐caprolactone) (PCL) polymers were prepared via controlled polymerization and chemical modification methods. Then, CA moieties containing three OH groups were introduced to these polymers as the end groups via Cu(I)‐catalyzed click reaction between azide end‐functional groups of the polymers ( mPEG‐N3 , PMMA‐N3 , PS‐N3 , and PCL‐N3 ) and ethynyl‐functional CA under ambient conditions, yielding CA end‐functional polymers ( mPEG‐Cholic , PMMA‐Cholic , PS‐Cholic , and PCL‐Cholic ). Finally, the obtained CA end‐capped polymers were employed as the macroinitiators in the ROP of ε‐caprolactone (ε‐CL) yielding AB3‐type miktoarm star polymers ( mPEG‐Cholic‐PCL3 , PMMA‐Cholic‐PCL3 , and PS‐Cholic‐PCL3 ) and asymmetric star polymer [ Cholic‐(PCL)4 ]. The chemical structures of the obtained intermediates and polymers were confirmed via Fourier transform infrared and 1H nuclear magnetic resonance spectroscopic techniques. Thermal decomposition behaviors and phase transitions were studied in detail using thermogravimetric analysis and differential scanning calorimetry experiments. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3390–3399  相似文献   

18.
Amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were synthesized by ring‐opening polymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and 2,2‐bis(azidomethyl)trimethylene carbonate (ADTC) with poly(ethylene glycol) monomethyl ether (mPEG) as an initiator, followed by the click reaction of propargyl palmitate and the pendant azido groups on the polymer chains. Stable micelle solutions of the amphiphilic block‐graft copolymers could be prepared by adding water to a THF solution of the polymer followed by the removal of the organic solvent by dialysis. Dynamic light scattering measurements showed that the micelles had a narrow size distribution. Transmission electron microscopy images displayed that the micelles were in spherical shape. The grafted structure could enhance the interaction of polymer chains with drug molecules and improve the drug‐loading capacity and entrapment efficiency. Further, the amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were low cytotoxic and had more sustained drug release behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
20.
A dendritic macroinitiator having 16 TEMPO‐based alkoxyamines, Star‐16 , was prepared by the reaction of a dendritic macroinitiator having eight TEMPO‐based alkoxyamines, [G‐3]‐OH , with 4,4′‐bis(chlorocarbonyl)biphenyl. The nitroxide‐mediated radical polymerization (NMRP) of styrene (St) from Star‐16 gave 16‐arm star polymers with PDI of 1.19–1.47, and NMPR of 4‐vinylpyridine from the 16‐arm star polymer gave 16‐arm star diblock copolymers with PDI of 1.30–1.43. The ring‐opening polymerization of ε‐caprolactone from [G‐3]‐OH and the subsequent NMRP of St gave AB8 9‐miktoarm star copolymers with PDI of 1.30–1.38. The benzyl ether linkages of the 16‐arm star polymers and the AB8 9‐miktoarm star copolymers were cleaved by treating with Me3SiI, and the resultant poly(St) arms were investigated by size exclusion chromatography (SEC). The SEC results showed PDIs of 1.23–1.28 and 1.18–1.22 for the star polymers and miktoarm stars copolymers, respectively, showing that they have well‐controlled poly(St) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1159–1169, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号