首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
Static secondary ion mass spectrometry (SIMS) was used to examine the effect of reducing the substrate temperature during the radio frequency plasma deposition of organic films. Studies of two polymerizable plasma precursors (2-hydroxyethyl methacrylate and acrylic acid) and one nonpolymerizable precursor (acetone) deposited without substrate cooling and with liquid nitrogen cooling are presented. Acetone deposited with methanol/dry ice cooling was also investigated. Spectra of polymerizable precursors were analyzed by comparison to spectra for the corresponding conventionally-polymerized polymer films [i.e., poly(hydroxyethyl methacrylate) and poly(acrylic acid)]. Acetone spectra were interpreted by reference to SIMS analysis of plasma-deposited films prepared from isotopically-labelled acetone and to reference homopolymers. Comparison of the SIMS spectra of films deposited at different substrate temperatures indicates that a reduction in substrate temperature generally results in higher intensity of peaks characteristic of oxygenated ion structures. SIMS also suggests that the reduction of substrate temperature results in less polymer unsaturation and fewer structures which form by hydrogen redistribution during the deposition process. These results support the hypothesis that deposition at low substrate temperatures leads to an increase in the proportion of precursor incorporated into the film without substantial fragmentation. Corroborative results from high resolution x-ray photoelectron spectroscopy (XPS) and assays for precursor functional groups by chemical derivatization reactions in conjunction with XPS are also presented. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray atomization enabled precisely controlled and continuous deposition, or growth, of block copolymer thin films. It also provided, in principle, the ability to fabricate heterolattice materials using sequential depositions. This possibility was explored and the morphology of resulting composite films produced by such sequential electrospray deposition (ESD) of lamellar diblock copolymers of poly(styrene-b-4-vinylpyridine) with differing molecular weights was examined. The structure of the heterolattice interface was a strong function of temperature. Sharp interfaces with abrupt changes in the lamellar period were observed at lower deposition temperatures, while higher temperatures produced a smooth variation in the lamellar period from one molecular weight to the next. The ordering kinetics of a secondary high molecular weight layer could be substantially enhanced depending on the molecular weight of the polymer present in the underlying primary layer. These findings were discussed in the context of temperature and molecular weight dependent diffusion dynamics of the polymers in the melt which control the inter-mixing of the layers and therefore the structure of the heterolattice interface. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 247–253  相似文献   

4.
The relationship between strain and growth conditions in LaCoO3 thin film was obtained to control the magnetic‐electric characteristics. The LaCoO3 thin films on the SrTiO3 substrates have been achieved by the pulsed laser deposition method, and the reflection high‐energy electron diffraction method (RHEED) was applied to monitor the growth process in situ; the layer‐by‐layer growth mode was discovered. The X‐ray diffraction and atomic force microscopy were applied to the phase analysis, and the layer thickness and the layer‐by‐layer growth mode were uncovered. Compared with the 100‐nm LaCoO3 thin films, the strain in the layer‐by‐layer ultra thin film was more controllable. The enhanced magnetic properties of the layer‐by‐layer mode ultra‐thin films could be tested in future work.  相似文献   

5.
Olivine-type LiFePO4 thin films were grown on MgO (1 0 0) substrates by pulsed laser deposition (PLD). The formation of an original nanostructure is evidenced by transmission electron microscopy measurements. Indeed, on focused ion beam prepared cross sections of the thin film, we observe, the amazing formation of metallic iron/olivine nanostructures. The appearance of such a structure is explained owing to a topotactic relation between the two phases as well as a strong Mg diffusion from the substrate to the film surface. Magnesium migration is thus concomitant with the creation of metallic iron domains that grow from the core of the film to the surface leading to large protuberances. To the best of our knowledge, this is the first report on iron extrusion from the olivine-type LiFePO4.  相似文献   

6.
Multiscale patterning must be realized to harness the action of precisely arrayed nanoscale ensembles at practical meso- and microscales. Self- and directed assembly methods hold promise toward achieving arrays of nanoparticles with both precise interparticle spacing and tailored nanoparticle shape. Nanometer scale dewetting of 10?? thick liquid copper films supported on graphite were investigated by molecular dynamics simulations.  相似文献   

7.
Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has been applied to reveal the molecular arrangement of ultrathin oligophenyl films [p-quaterphenyl (4P) and p-hexaphenyl (6P)] on Au(111). In the half-monolayer films the molecules lie flat on the surface but still have a considerable inter-ring twist of 30 degrees -40 degrees , similar to the gas-phase conformation. In the saturated monolayer film the second half of the molecules is side-tilted by an angle of less than 66 degrees with respect to the surface. This arrangement is already similar to that in bulk net planes of thicker films parallel to the surface, that is, the 4P(211) and 6P(21-3) planes, respectively.  相似文献   

8.
Recently we have combined infrared spectroscopy and atomic resolution scanning tunneling microscopy (STM) to probe the local structure and intermolecular arrangement of molecules within thin films. IR spectroscopy provides spatially averaged information about orientation of the molecules with respect to the surface and about intermolecular arrangement within the crystallographic unit cell. STM data yields a local picture of molecular packing within the film. The requirements of an atomically flat (over distances of hundreds of angstroms) conducting substrate for the STM are fulfilled by an epitaxially grown film of gold on a cleaved mica substrate which also provides a good infrared reflective surface, enabling IR and STM measurements on identical samples. Systems investigated include Langmuir-Blodgett films of cadmium arachidate and self-assembled films of octadecyltrichlorosilane.  相似文献   

9.
Studying the effect of alkali and alkaline‐earth metal cations on Langmuir monolayers is relevant from biophysical and nanotechnological points of view. In this work, the effect of Na+ and Ca2+ on a model of an anionic Langmuir lipid monolayer of dimyristoylphosphatidate (DMPA?) is studied by molecular dynamics simulations. The influence of the type of cation on lipid structure, lipid–lipid interactions, and lipid ordering is analyzed in terms of electrostatic interactions. It is found that for a lipid monolayer in its solid phase, the effect of the cations on the properties of the lipid monolayer can be neglected. The influence of the cations is enhanced for the lipid monolayer in its gas phase, where sodium ions show a high degree of dehydration compared with calcium ions. This loss of hydration shell is partly compensated by the formation of lipid–ion–lipid bridges. This difference is ascribed to the higher charge‐to‐radius ratio q/r for Ca2+, which makes ion dehydration less favorable compared to Na+. Owing to the different dehydration behavior of sodium and calcium ions, diminished lipid–lipid coordination, lipid–ion coordination, and lipid ordering are observed for Ca2+ compared to Na+. Furthermore, for both gas and solid phases of the lipid Langmuir monolayers, lipid conformation and ion dehydration across the lipid/water interface are studied.  相似文献   

10.
The excitation energy dependence of the reaction quantum yield and the carbon contamination in synchrotron radiation‐stimulated aluminum thin‐film deposition using the low‐temperature condensed layer of dimethylaluminum hydride (DMAH) were evaluated quantitatively in the vacuum ultraviolet region for the first time. It has been found that the core‐electron excitation gives a few tens to hundreds of times higher a reaction quantum yield than the valence‐electron excitations. This is explained qualitatively by the Auger‐stimulated desorption model. The carbon contamination decreases due to a site‐specific effect of the core‐electron excitations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
An electrochemical sensor based on a molecularly imprinted TiO2 thin film is proposed for the determination of acetaminophen. The imprinted TiO2 films were obtained by liquid phase deposition (LPD) in the presence of acetaminophen, the functional monomer and the aqueous solution of (NH4)2TiF6 and H3BO3. The results show that acetaminophen is embedded into the imprinted film in the presence of p-tert-butylcalix[6]arene as a functional monomer, and can be removed completely by washing with ethanol. The surface morphology, spectral properties and electrochemical characterizations of the imprinted sensor were investigated in detail. The combination of molecularly imprinted and LPD technique was shown to be a general strategy for constructing a molecular recognition system.  相似文献   

12.
The oxidation of 5-hydroxytryptophan (5-HTPP) yielded a passivating polymeric film at an indium tin oxide (ITO) electrode. Coating ITO with a nanoscale sol-gel film with a mesoporous structure was shown to change the pathway of the chemical reaction coupled to the electron transfer. The sol-gel film was deposited by an electrochemically assisted process, and the mesoporosity was imparted by including generation-4 poly(amidoamine) dendrimer in the precursor solution. The dendrimer was removed subsequently with an atmospheric oxygen plasma. This electrode remained active during cyclic voltammetry and controlled potential electrolysis of 5-HTPP, which was attributed to dimer, rather than polymer, formation from the oxidation product. Mass spectrometry confirmed this hypothesis. The anodic current was limited by the electron-transfer kinetics. Modification of the sol-gel film by inclusion of cobalt hexacyanoferrate, which catalyzes the oxidation, resulted in a diffusion-limited current. Determination of 5-HTPP by flow-injection amperometry had a detection limit of 17 nM.  相似文献   

13.
LiMn2O4 thin films with different crystallizations were respectively grown at high, medium and low temperatures by pulsed laser deposition (PLD). Structures, morphologies and electrochemical properties of these three types of thin films were comparatively studied. Films grown at high temperature (?873 K) possessed flat and smooth surfaces and were highly crystallized with different textures and crystal sizes depending on the deposition pressure of oxygen. However, films deposited at low temperature (473 K) had rough surfaces with amorphous characteristics. At medium temperature (673 K), the film was found to consist mainly of nano-crystals less than 100 nm with relatively loose and rough surfaces, but very dense as observed from the cross-section. The film deposited at 873 K and 100 mTorr of oxygen showed an initial discharge capacity of 54.3 μAh/cm2 μm and decayed at 0.28% per cycle, while the amorphous film had an initial discharge capacity of 20.2 μAh/cm2 μm and a loss rate of 0.29% per cycle. Compared with the highly crystallized and the amorphous films, nano-crystalline film exhibited higher potential, more capacity and much better cycling stability. As high as 61 μAh/cm2 μm of discharge capacity can be achieved with an average decaying rate of only 0.032% per cycle up to 500 cycles. The excellent performance of nano-crystalline film was correlated to its microstructures in the present study.  相似文献   

14.
15.
The formation of well-oriented MgAl2O4 spinel films by solid state reactions between (i) a MgO (001) substrate and an Al2O3 vapour and (ii) a sapphire (1 1 .2) substrate and a deposited solid MgO film, respectively, is experimentally investigated. Composition, structure and morphology of the films are characterized by XRD, SEM, TEM/SAED, and EDX. The reaction fronts involved are investigated by cross-sectional atomic resolution transmission electron microscopy (ARM). The direction of the overall diffusion flux and the kind of diffusing species are determined in experiments using inert markers of sub-micron size. There are common features and, however, distinct differences between cases (i) and (ii). On MgO (001) substrates, the MgAl2O4 films grow in a simple cube-to-cube orientation: MgAl2O4(001) ∥ MgO(001); MgAl2O4[100] ∥ MgO [100]. The films consist of small grains about 25 to 50 nm in diameter, the orientation of which is symmetrically distributed around the exact orientation, with maximum deviations of about ±2°. On sapphire (1 1 .2) substrates the MgAl2O4 films grow almost in the orientation MgAl2O4(001) ∥ Al2O3(1 1 .2); MgAl2O4[010] ∥ Al2O3[11.0]. These films consist of larger grains about 100 nm in diameter, the orientation of which systematically deviates from the above orientation by unidirectional rotations up to 5 to 6° around the substrate [11.0] axis. The structures of the reaction fronts show corresponding differences, which are discussed in terms of different mechanisms occurring at the initial stage of the spinelforming reaction because of the different crystallographic conditions at the beginning of the reactions.  相似文献   

16.
YBa2Cu3Ox (Y-123) and Bi2Sr2Ca1Cu2Ox (Bi-2212) films on various substrates have been prepared by Metal-Organic Deposition starting from different metallorganic fluorine-free compounds and using a very simple instrumentation. The processing conditions include a rapid pyrolysis step in air and an annealing step in oxygen for Y-123 and in air for Bi-2212. The films obtained have been characterized by X-ray diffraction (XRD) and the formation of a superconducting phase of Y-123 or Bi-2212 was confirmed measuring the critical temperature (T c) with Ac-susceptibility and resistive measurements. Microstructure and final cationic ratios have been studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号