首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We report on the generation of surface attached polymer networks through C,H insertion reactions based on carbene intermediates. To this copolymers based on N,N‐dimethyl acrylamide, which contain α‐diazo ester groups, are generated and coated onto a solid substrate covered with a self‐assembled monolayer of a silane. After deposition, films having thicknesses of approximately 120 nm are irradiated with UV light having a wavelength of 254 nm or 360 nm or heated to temperatures between 80 and 180 °C. During the light or heat‐induced activation process, carbenes are formed, which react via C—H insertion with any neighboring polymer chain and/or with the self‐assembled monolayer on the substrate, thus forming surface‐attached polymer networks. To follow the kinetics of the crosslinking process, the conditions are adjusted, so that they range between 5 and 10 min for the UV‐crosslinking and 5 to 15 min for the heat‐induced crosslinking. UV‐patterning of the surface‐attached polymer networks through chrome contact masks allows generation of microstructures in the micrometer range. We investigate the layer formation process and describe the formation of microstructured surfaces based on these surface‐attached polymer networks. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3276–3285  相似文献   

2.
The effect of the strength of electrostatic and short-range interactions on the multilayer assembly of oppositely charged polyelectrolytes at a charged substrate was studied by molecular dynamics simulations. The multilayer buildup was achieved through sequential adsorption of charged polymers in a layer-by-layer fashion from dilute polyelectrolyte solutions. The strong electrostatic attraction between oppositely charged polyelectrolytes at each deposition step is a driving force behind the multilayer growth. Our simulations have shown that a charge reversal after each deposition step is critical for steady multilayer growth and that there is a linear increase in polymer surface coverage after the first few deposition steps. Furthermore, there is substantial intermixing between chains adsorbed during different deposition steps. We show that the polymer surface coverage and multilayer structure are each strongly influenced by the strength of electrostatic and short-range interactions.  相似文献   

3.
An anionic and a cationic bipolar amphiphile containing rigid biphenyl cores were synthesized. The compounds were dissolved in a mixture of dimethylsulfoxide (DMSO) and water and pure water, respectively. When a solid substrate with a positively charged planar surface is immersed in the solution containing the negatively charged bipolar amphiphile, a monolayer of the amphiphile is adsorbed and due to its bipolar structure the surface charge is reversed. After rinsing in pure water the substrate is immersed in the solution containing the positively charged bipolar amphiphile. Again a monolayer is adsorbed but now the original surface charge is restored. By repeating both steps in a cyclic fashion alternating multilayer assemblies of both compounds are obtained. It is demonstrated that multilayer films, composed of at least 35 consecutively alternating layers, which corresponds to a total film thickness of 170 nm can be assembled.  相似文献   

4.
New amphiphilic polyhedral oligomeric silsesquioxanes (POSSs) were synthesized, and their monolayer behavior on a water surface and Langmuir-Blodgett (LB) film formation were studied. Two kinds of amphiphilic POSS molecules, which have two or four di(ethylene glycol) units (2OH-DDSQ and 4OH-DDSQ, respectively), were synthesized by direct hydrosilylation of di(ethylene glycol) vinyl ether with double-decker shaped polyhedral oligomeric silsesquioxanes (DDSQs). Surface pressure (π)-area (A) isotherms and Brewster angle microscope (BAM) measurements indicated that both amphiphilic DDSQs form a stable monolayer at the air-water interface. In addition, 4OH-DDSQ can be deposited on a solid substrate by the LB technique. Atomic force microscope (AFM) images of a one-layer 4OH-DDSQ film showed a homogenous uniform surface on a hydrophilic silicon substrate, whereas nanometer scale dots were formed on a hydrophobic silicon substrate. Multilayer deposition on a hydrophobic substrate resulted in an increase of dot size with increasing deposition number of layers. Moreover, homogenous multilayer films with a few voids were obtained on a hydrophilic substrate. The results indicate that 4OH-DDSQ is a good candidate for preparing hybrid nanoassemblies.  相似文献   

5.
The effect of two factors having the most important influence on spin coating process of sol-gel films: the spin speed and the temperature (of the substrate and the applied solution) during film deposition is discussed. It is shown, that film thickness and thickness uniformity are determined by centrifugal driving force dynamics, viscous polymer rheology, solvent evaporation dynamics, and film porous microstructure.  相似文献   

6.
We performed molecular dynamics simulations of the electrostatic assembly of multilayers of flexible polyelectrolytes at a charged surface. The multilayer build-up was achieved through sequential adsorption of oppositely charged polymers in a layer-by-layer fashion from dilute polyelectrolyte solutions. The steady-state multilayer growth proceeds through a charge reversal of the adsorbed polymeric film which leads to a linear increase in the polymer surface coverage after completion of the first few deposition steps. Moreover, substantial intermixing between chains adsorbed during different deposition steps is observed. This intermixing is consistent with the observed requirement for several deposition steps to transpire for completion of a single layer. However, despite chain intermixing, there are almost perfect periodic oscillations of the density difference between monomers belonging to positively and negatively charged macromolecules in the adsorbed film. Weakly charged chains show higher polymer surface coverage than strongly charged ones.  相似文献   

7.
The spread monolayer formation of hydrophobic poly(3-alkylthiophene)s (P3ATs), regioregular poly(3-hexylthiophene) ( HT-P3HT), regioregular poly(3-dodecylthiophene) ( HT-P3DT), and regioirregular poly(3-hexylthiophene) ( RI-P3HT), were attained on the water surface via cospreading with a liquid-crystal molecule, 4'-pentyl-4-cyanobiphenyl (5CB). The spread monolayers were characterized by pi- A isotherms, Brewster angle microscopy (BAM), and atomic force microscopy (AFM). The molecular area for the cospread mixtures of P3ATs and 5CB expanded more than that of pure P3ATs as shown from the pi-A isotherms. BAM revealed that the mixed film forms the monomolecularly uniform and flat films on water. AFM elucidated that the spread monolayer of the hydrophobic P3ATs formed on the top of the 5CB monolayer on water with thicknesses of ca. 1.6 and ca. 2.6 nm for the two P3HTs and HT-P3DT, respectively. The P3AT/5CB hybrid monolayers could be fully transferred onto a solid substrate, and pure P3AT monolayers were obtained after volatilization of 5CB by gentle heating. The multilayer formation of pure P3AT monolayers was prepared by layer-by-layer deposition involving repeating horizontal deposition and successive volatilization of 5CB. Grazing angle incidence X-ray diffraction measurements showed that the lamella plane of the P3ATs is perfectly oriented parallel to the substrate plane in the resulting thin films. This shows a marked contrast with those obtained by spin casting using the identical polymer, where both in-plane and out-of-plane lamellae are involved. These thin films with perfectly controlled lamella orientation should be of great significance as the model system for evaluating the charge mobility for organic polymer electric devices.  相似文献   

8.
A grafting technique was proposed for the preparation of polymer monolayer on polymeric substrate. On the basis of our recent work on polymer‐supported inhibitor (PSI), hydroquinone (HQ) was first implanted onto polypropylene (PP) surface through UV‐initiated grafting. The resulting immobilized HQ was used as PSI for the thermal‐induced free radical polymerization (FRP) of acrylic acid (AA). The inhibition mechanism was similar to that of free HQ molecule, that is, polymer chain‐carrying radical or peroxy radical could be deactivated by abstracting hydrogen atom from hydroxyl group of immobilized HQ, and the resulting oxyradical (semiquinone radical) combined with another active chain free radical. According to this mechanism, a devised redox initiator consisting of sodium hydrogen sulfite and ammonium persulfate was used to initiate FRP of AA in water at low temperature (50 °C). High crystalline biaxial oriented PP film with HQ immobilized was deliberately laid in this system as a radical trap to capture poly(acrylic acid) (PAA) short chain radical. Through X‐ray photoelectron spectra (XPS) analysis it was found that the atom ratio of CHQ (carbon in HQ) to CCOOH (carbon in COOH) decreased with prolonging polymerization time and became stable after about 30 min. The formed PAA short chain on the surface showed a distribution of monolayer, and the saturated thickness was calculated as 5–7 Å. The degree of polymerization of graft chain in PAA monolayer was estimated as 15–20 through three different models. Relating to surface coverage being 100% in ideal densely packed PAA monolayer, real monolayer surface coverage in such reaction system was estimated as 12.3–18.5%. This method was expected to give us a general approach for constructing kinds of graft polymer monolayer on polymeric substrate, because the involved chemistry was only common inhibition reaction between immobilized inhibitor (HQ) and FRP system in solution (herein redox initiating system of AA). We named this grafting chemistry as confined surface inhibition reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 745–755, 2007  相似文献   

9.
10.
We conducted a study of the effect of solvent quality on the kinetics of formation of a layer of polymer chains tethered to a solid substrate. In these experiments, tethering was accomplished by means of chemical bond formation between reactive sites on the surface and the end‐functional groups of the polymer chains in solution. All experimental variables were held constant except for the χ‐parameter between the polymer and solvent. Variation in the χ‐parameter was achieved by use of a series of nonpolar, organic solvents. The distinct three‐regime kinetics, typical of tethering reactions run in a good solvent and in the absence of segmental adsorption, was observed over the range of values for the χ‐parameter. As expected, an increase in the χ‐parameter (a decrease in solvent quality) did result in increased tethering density, but, contrary to expectation, no increase in tethering rate was observed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5530–5537, 2004  相似文献   

11.
Probing the role of the first monolayer in the evolution of the film polymer microstructure is essential for the fundamental understanding of the charge carrier transport in polymeric field-effect transistors (FETs). The monolayer and its subsequent microstructure of a conjugated polymer [poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT] film were fabricated via solution deposition by tuning the dip-coating speed and were then studied as accumulation and transporting layers in FETs. Investigation of the microstructure of the layers prepared at different coating velocities revealed that the monolayer serves as an important base for further development of the film. Significant improvement of the charge carrier transport occurs only at a critical multilayer network density that establishes the required percolation pathways for the charge carriers. Finally, at a low dip-coating speed, the polymer chains are uniaxially oriented, yielding pronounced structural anisotropy and high charge carrier mobilities of 1.3 cm(2) V(-1) s(-1) in the alignment direction.  相似文献   

12.
《Supramolecular Science》1997,4(1-2):141-146
Self-assembled monolayers (SAMs) on surfaces may be used as molecular templates for the selective deposition of polymer multilayer films. SAMs of ω-functionalized alkane thiolates are patterned onto gold surfaces with micron scale features using the microcontact printing method; glass substrates can also be patterned with trichloroalkylsilane SAMs. Patterned polymeric monolayer and multilayer films are adsorbed atop the SAM from dilute polymer solutions using ionic macromolecular self-assembly techniques which have been developed recently. The effects of polymer molecular weight and ionic content, as well as the use of a second SAM in the unpatterned regions to promote selectivity are discussed. Surface roughness, selectivity and other film properties are presented. It is demonstrated that this technique can be used successfully in the patterning of micron scale features with multilayers of low molecular weight upon adsorption from dilute solution.  相似文献   

13.
In this paper, we investigated electrochemical properties of polymer multilayers on gold substrates using impedance spectroscopy. The multilayer was prepared by chemoselective ligation between aldehyde- and oxyamine-functionalized polymers via a layer-by-layer approach. The impedance spectra in a buffer solution in the absence of redox species revealed the formation of highly impermeable and defect-free films. The dielectric thickness of the polymer film, which is proportional to the reciprocal of capacitance, linearly increased as the number of deposition layer increased. The defect area of the polymer multilayer was obtained using the faradaic impedance with redox species. The surface coverage of eight polymer layers was determined to be 99.99%. Thus, the layer-by-layer deposition via chemoselective ligation offers a new way to prepare a highly insulating and defect-free polymer layer with finely tunable capacitance as a function of the number of deposition layers.  相似文献   

14.
This study elucidates the influence of the atom transfer radical polymerization initiator structure, monolayer versus disordered multilayer, on the growth kinetics and the structural transition of poly(methyl methacrylate) (PMMA) brush layers. The multilayer initiator film, prepared by acylation of the electrografted 2‐phenylethanol layer using 2‐bromoisobutyryl bromide, consists of ~4.6 times more tert‐butyl bromide groups compared to monolayer initiator prepared by self assembly technique. The results demonstrate the formation of precursor complex between CuI catalyst and the bromine initiator as a prerequisite step before the onset of polymerization. Furthermore, the PMMA brushes formed by the polymerization from the multilayered initiator layer at 50 °C are 20‐fold thicker compared to the polymerization at 25 °C due to the swelling of the multilayered initiator film. In contrast, the thickness of the PMMA layer on the monolayer initiator is less affected by the polymerization temperature. By varying the initiator density on the surface, the solvent content in the PMMA layer is shown to vary from 15% to 94%, resulting in the transition from concentrated over semidiluted to diluted brushes. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Particle monolayer formation at the air–water interface by polymer‐grafted colloidal silica was investigated. Methyl methacrylate (MMA) was polymerized from initiative bromide groups at colloidal silica surface by atom transfer radical polymerization. We obtained polymer‐grafted silica particle (SiO2‐PMMA) with relative narrow polydispersity of PMMA. For the polymer‐grafted particle with high graft density, particle monolayer formation was confirmed by π‐A isotherm measurement and SEM observation. Interparticle distance was controllable by surface pressure. Furthermore, grafted polymer chains were suggested to be fairly extended at the air–water interface. However, for the polymer‐grafted particle with low graft density, monolayer structure on substrate showed aggregation and voids. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2789–2797, 2006  相似文献   

16.
The polymer-on-polymer stamping technique was used to template patterned TiO2 onto polymer thin films. Polystyrene-b-polyvinyl pyridine diblock copolymer (PS-b-PVP) was stamped on a layer-by-layer assembled thin film of poly(allylamine hydrochloride) and poly(acrylic acid). After rinsing the surface with a good solvent for the block copolymer, an adsorbed PS-b-PVP monolayer remained on the polyelectrolyte film, resulting in a pattern of alternating hydrophobic and carboxylic acid containing hydrophilic regions. The surface was used as a template for the selective deposition of TiO2 on the multilayer surface, using an acid-catalyzed hydrolysis of(NH4)2TiF6. Using this novel approach, we have successfully demonstrated the patterning of TiO2 film on a polyelectrolyte multilayer. Finally, nanoscale features consisting of 200 nm lines alternating with a 350 nm period was accomplished. This paper represents the first such attempt to create an all-polymer nonlithographic template for the directed deposition of TiO2 or related metal oxides; this technique, which utilizes the versatile polyelectrolyte multilayer process, enables the construction of complex polymer-inorganic microstructures suitable for electrooptical and photonic applications.  相似文献   

17.
The growth of zinc phthalocyanine (ZnPc) on Ag(100) surface from monolayer to multilayer was investigated by low-energy electron diffraction, x-ray diffraction, and high-resolution electron energy loss spectroscopy (HREELS). At monolayer coverage, ZnPc molecules form an ordered film with molecular planes parallel to the substrate. The same structure is maintained as the film thickness increases. HREELS analysis shows that intermolecular π-π interaction dominates during the film growth from monolayer to multilayer. The π-d interaction between the adsorbates and the substrate is only applicable in the first adlayer. Stronger intermolecular-layer interaction is observed at higher coverages.  相似文献   

18.
We present the first measurements of the simultaneous diffusion, surface enhancement, and evaporation of a plasticizer from a polymer, thin-film matrix using neutron reflection techniques. The reflectivity profiles as a function of the annealing time at an elevated temperature yield the time-dependent, plasticizer volume fraction profiles in a polyester–polyurethane (Estane) film. Thin, plasticizer-enriched layers form at both the polymer/substrate and polymer/air interfaces for annealed and unannealed samples. The diffusion equations for a material diffusing through a film and then evaporating into a vacuum at the free surface describe the loss of the plasticizer from the film for annealed samples. The loss of the plasticizer from the film is not limited by the movement of the plasticizer through the polymer matrix but is dominated by the plasticizer's rate of evaporation from the surface. The rate of evaporation and the volume fraction profiles for the plasticizer at the substrate interface are both consistent with surface attractions dominating over bulk attractions between the miscible plasticizer and the polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3258–3266, 2004  相似文献   

19.
Nanofriction properties of molecular deposition films   总被引:15,自引:0,他引:15  
The nanofriction properties of Au substrate and monolayer molecular deposition film and multilayer molecular deposition films on Au substrate and the molecular deposition films modified with alkyl-terminal molecule have been investigated by using an atomic force microscope. It is concluded that ( i ) the deposition of molecular deposition films on Au substrate and the modification of alkyl-terminal molecule to the molecular deposition films can reduce the frictional force; (ii) the molecular deposition films with the same terminal exhibit similar nanofriction properties, which has nothing to do with the molecular chain-length and the layer number; (iii) the unstable nanofriction properties of molecular deposition films are contributed to the active terminal of the molecular deposition film, which can be eliminated by decorating the active molecular deposition film with alkyl-terminal molecule, moreover, the decoration of alkyl-terminal molecule can lower the frictional force conspicuously; (iv) the relat  相似文献   

20.
Polyhedral oligomeric silesquioxanes (POSS) with eight polyether substituents were mixed with the liquid crystal (LC) 4-octyloxy-4′-cyanobiphenyl and spread at the air/water interface. The surface pressure-area and surface potential-area isotherms were recorded for different weight ratios of both components. The obtained results showed that POSS molecules had beneficial influence on LC monolayer improving its stability and rigidity. Moreover, it was found that some LC–POSS mixtures collapse reversibly and form multilayer films on the top of LC monolayer. On the other hand, interfacial dilatational and shear rheology indicated decrease of elasticity of the films after mixing. Brewster angle microscopy revealed multilayer structure of the condensed film and formation of net-like structures in the expanded film. These films were successfully transferred on solid substrates using the Langmuir–Blodgett technique. The scanning electron microscopy images confirmed the film deposition and formation of networks by POSS–LC mixtures. These findings may be useful in the fabrication of electronic devices based on LCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号