首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber‐coating material for the solid‐phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene‐coated fiber coupled with high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05‐0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0 ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene‐coated fiber showed higher extraction efficiency.  相似文献   

2.
In this research, a new solid‐phase microextraction fiber based on carbon ceramic composites with copper nanoparticles followed by gas chromatography with flame ionization detection was applied for the extraction and determination of some nitro explosive compounds in soil samples. The proposed method provides an overview of trends related to synthesis of solid‐phase microextraction sorbents and their applications in preconcentration and determination of nitro explosives. The sorbents were prepared by mixing of copper nanoparticles with a ceramic composite produced by mixture of methyltrimethoxysilane, graphite, methanol, and hydrochloric acid. The prepared sorbents were coated on copper wires by dip‐coating method. The prepared nanocomposites were evaluated statistically and provided better limits of detection than the pure carbon ceramic. The limit of detection of the proposed method was 0.6 μg/g with a linear response over the concentration range of 2–160 μg/g and square of correlation coefficient >0.992. The new proposed fiber has been demonstrated to be a suitable, inexpensive, and sensitive candidate for extraction of nitro explosive compounds in contaminated soil samples. The constructed fiber can be used more than 100 times without the need for surface generation.  相似文献   

3.
采用阳极氧化法在镍钛合金(NiTi)纤维上原位生长了双金属氧化物纳米孔(NiTiONPs)涂层,通过扫描电镜(SEM)和能谱(EDS)考察了电解质组成和电压对形貌的影响。将NiTiONPs涂层的NiTi纤维与高效液相色谱-紫外检测器联用,研究了4种典型芳香分析物的萃取性能。结果表明,富含TiO2的NiTiONPs涂层对多环芳烃(PAHs)具有良好的萃取效率,尤其对苯并[a]芘的萃取选择性优于市售聚二甲基硅氧烷纤维和聚丙烯酸酯纤维。在优化条件下,PAHs的线性范围为0.05~200μg/L,相关系数均大于0.999,检出限为0.012~0.134μg/L。对单支纤维日内和日间分析的相对标准偏差(RSDs)分别为4.0%~5.5%和6.0%~6.8%,使用分批组装的5支纤维分析的RSDs为6.4%~7.6%。实际水样分析的加标回收率为84.5%~111.5%。所制备NiTi纤维至少可重复使用250次以上,重现性好。  相似文献   

4.
分别采用PDMS、PDMS/DVB、CWX/DVB三种萃取头,应用固相微萃取与高效液相色谱联用技术(SPME-HPLC)分析了水溶液中的痕量酞酸二(2-乙基已基)酯(DE-HP)。实验发现,PDMS/DVB萃取头的萃取效果较其他两种萃取头理想;对SPME的萃取条件进行了优化,建立了水中痕量DEHP的SPME-HPLC分析方法,并对实际水样进行了分析。该方法的线性范围为0.62~15.60mg/L,相关系数为0.9991,检出限为0.06mg/L(3σ,n=11),相对标准偏差(RSD)为3.3%,回收率为89.9%~101.3%。  相似文献   

5.
A new method for the determination of polycyclic aromatic hydrocarbons (PAHs) in waste water using solvent-free solid-phase microextraction (SPME) is described. The PAHs are extracted with a 100 microm polydimethylsiloxane (PDMS) fiber, desorbed in 40 microl acetonitrile and measured with LC and fluorescence detection. The detection limits of this very simple method under the given conditions (extraction from 5 ml sample, extraction time 1 h) are in the range of 1-6 ng l(-1). The standard deviations (n = 6) at a concentration level of 0.8 microg l(-1) are between 1.8 and 14.4%. The procedure was used for the determination of PAHs in contaminated water samples.  相似文献   

6.
A prepared molecularly imprinted polymer with ethyl p‐hydroxybenzoate as template molecule was applied for the first time to a homemade solid‐phase microextraction fiber. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was characterized by scanning electron microscopy and thermogravimetric analysis. Various parameters were investigated, including extraction temperature, extraction time, and desorption time. Under the optimum extraction conditions, the molecularly imprinted polymer‐coated solid‐phase microextraction fiber exhibited higher selectivity with greater extraction capacity toward parabens compared with the nonimprinted polymer‐coated solid‐phase microextraction fiber and commercial fibers. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was tested using gas chromatography to determine parabens, including methyl p‐hydroxybenzoate, ethyl p‐hydroxybenzoate, and propyl p‐hydroxybenzoate. The linear ranges were 0.01–10 μg/mL with a correlation coefficient above 0.9943. The detection limits (under signal‐to‐noise ratio of 3) were below 0.30 μg/L. The fiber was successfully applied to the simultaneous analysis of three parabens in spiked soy samples with satisfactory recoveries of 95.48, 97.86, and 92.17%, respectively. The relative standard deviations (n=6) were within 2.83–3.91%. The proposed molecularly imprinted polymer‐coated solid‐phase microextraction method is suitable for selective extraction and determination of trace parabens in food samples.  相似文献   

7.
Huang SD  Huang HI  Sung YH 《Talanta》2004,64(4):887-893
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) for the determination of triazine is described. Carbowax/templated resin (CW/TPR, 50 μm), polydimethylsiloxane/divinylbenzene (PDMS/DVB, 60 μm), polydimethylsiloxane (PDMS, 100 μm), and polyacrylate (PA, 85 μm) fibers were evaluated for extraction of the triazines. CW/TPR and PDMS/DVB fibers were selected for further study. Several parameters of the extraction and desorption procedure were studied and optimized (such as types of fibers, desorption mode, desorption time, compositions of solvent for desorption, soaking periods and the flow rate during desorption period, extraction time, temperature, pH, and ionic strength of samples). Both CW/TPR and PDMS/DVB fibers are acceptable; a simple calibration-curve method based on simple aqueous standards can be used. The linearity of this method for analyzing standard solution has been investigated over the range 5-1000 ng mL−1 for both PDMS/DVB and CW/TPR fibers. All the correlation coefficients in the range 5-1000 ng mL−1 were better than 0.995 except Simazine and Atratone by CW/TPR fiber. The R.S.D.s range from 4.4% to 8.8 % (PDMS/DVB fiber) and from 2.4% to 7.2% (CW/TPR fiber). Method-detection limits (MDL) are in the range 1.2-2.6 and 2.8-3.4 ng mL−1 for the two fibers. These methods were applied to the determination of trazines in environmental water samples (lake water).  相似文献   

8.
刘敬科  张爱霞  李少辉  赵巍  张玉宗  邢国胜 《色谱》2017,35(11):1184-1191
为全面了解小米黄酒风味成分的构成和气味特征,优化了85μm聚丙烯酸酯(PA)、100μm聚二甲基硅氧烷(PDMS)、75μm碳分子筛(CAR)/PDMS、50/30μm二乙烯基苯(DVB)/CAR/PDMS萃取头提取小米黄酒风味成分的条件,采用顶空固相微萃取(headspace solid phase microextraction,HS-SPME)-气相色谱-质谱法(GC-MS)对风味成分进行定性、定量分析,并计算气味活性值(odor active value,OAV),同时利用OAV分析风味成分的气味特征和气味强度。结果显示:不同萃取头的最优萃取条件为样品量8 mL、萃取时间40 min、萃取温度60℃、NaCl添加量1.5 g。小米黄酒风味成分由醇、酯、含苯化合物、烃、酸、醛、酮、烯、酚和杂环类化合物构成,醇为主要风味成分。通过OAV确定了苯乙醇、苯乙烯、2-甲基萘、1-甲基萘、苯甲醛、苯乙醛、2-甲氧基-苯酚为小米黄酒气味特征成分,苯基乙醇、苯乙醛对气味贡献最大。PA和PDMS萃取头分别对极性和非极性化合物具有较好的吸附效果,CAR/PDMS和DVB/CAR/PDMS萃取头对中等极性化合物具有较好的吸附效果。该研究全面了解了小米黄酒风味成分的构成,为其产品开发及品质控制提供理论了依据。  相似文献   

9.
The use of solid-phase microextraction (SPME) coupled to ion mobility spectrometry (IMS) to detect precursor and degradation products of chemical warfare agents (CWAs) as soil contaminants was investigated. The development and characterization of a system to interface a thermal desorption solid-phase microextraction inlet with a hand held ion mobility spectrometer was demonstrated. The analytes used in this study were diisopropyl methylphosphonate (DIMP), diethyl methylphosphonate (DEMP), and dimethyl methylphosphonate (DMMP). Two SPME fibers with different stationary phases, 100 μm polydimethylsiloxane (PDMS) and 65 μm polydimethylsiloxane divinylbenzene (PDMS/DVB), were evaluated in this study to determine the optimal fiber and extraction conditions. Better results were obtained with the PDMS fiber. SPME-IMS offered good repeatability and detection of the precursor and degradation products in spiked soil at concentrations as low as 10 μg/g. Sample analysis time was less than 30 min for all the precursor and degradation products.  相似文献   

10.
陈娜  张毅军  赵万里  陈军  张裕平 《色谱》2018,36(1):5-11
采用氯化胆碱-乙二醇低共熔溶剂(DES)作致孔剂,制备了聚(甲基丙烯酸丁酯-乙二醇二甲基丙烯酸酯)[poly(BMA-EDMA)]固相微萃取头,并与超高效液相色谱法(UPLC)结合测定了湖水中的3种多环芳烃(PAHs)。实验与不使用DES致孔剂的固相微萃取头和商品化聚二甲硅氧烷(PDMS)萃取头进行比较,含DES的poly(BMA-EDMA)固相微萃取头的富集效果最好。系统考察了萃取条件(萃取时间、萃取溶剂、解吸时间、解吸溶剂及离子强度)对水样中多环芳烃萃取效率的影响。在最优的实验条件下,3种多环芳烃类化合物(萘、联苯、菲)的线性范围为0.1~6.0 mg/L(r≥0.990 3),检出限为2.1~4.9μg/L,回收率为86.4%~111.3%,相对标准偏差(RSD,n=6)为11.2%~15.1%。该法操作简便,稳定性好,成本低,适用于实际环境水样中多环芳烃类化合物的测定。  相似文献   

11.
The solid‐phase microextraction (SPME) technique using a 100 μm film polydimethylsiloxane (PDMS) coated fiber has been examined with the aim to determine dichlorobenzene in aqueous samples. The feasibility of SPME‐GC‐ECD analysis has been evaluated. Absorption time of 30 min was selected and 1 min was long enough for complete desorption of the analytes in the injection port of the gas chromatograph. Linear ranges from 0.03 to 5 μg/L and method detection limits between 7 and 9 ng/L for dichlorobenzenes were obtained. The relative standard deviations were less than 12% for a spiking level of 3 μg/L. The proposed method was applied to determine dichlorobenzenes in spiked deionized water, ground water, and in industrial effluent samples.  相似文献   

12.
Solid phase microextraction and capillary gas chromatography-mass spectrometry were used for the determination of seven terpenes in tequila. The method was selected based on the following parameters: coating selection (PA, PDMS, CW/DVB, and PDMS/DVB), extraction temperature, addition of salt, and extraction time profile. The extraction conditions were: PDMS/DVB fiber, Headspace, 100% NaCl, 25 degrees C extraction temperature, 30 min extraction time and stirring at 1200 rpm. The calibration curves (50-1000 ng/ml) for the terpenes followed linear relationships with correlation coefficients (r) greater than 0.99, except for trans,trans-farnesol (r = 0.98). RSD values were smaller than 10% confirmed that the technique was precise. Samples from 18 different trade brands of "Aged" tequila analyzed with the developed method showed the same terpenes in different concentrations. The analytical procedure used is selective, robust (more than 100 analyses with the same fiber), fast and of low-cost.  相似文献   

13.
A solid-phase microextraction (SPME) procedure has been developed for the determination of 16 US Environmental Protection Agency promulgated polycyclic aromatic hydrocarbons (PAHs). Five kinds of SPME fibers were used and compared in this study. The extracted sample was analyzed by gas chromatography with flame ionization detection or mass spectrometry. Parameters affecting the sorption of analyte into the fibers, including sampling time, thickness of the fiber coating, and the effect of temperature, have been examined. Moreover, the feasibility of headspace SPME with different working temperatures was evaluated. The method was also applied to real samples. The 85-microm polyacrylate (PA) and 100-microm poly(dimethylsiloxane) (PDMS) fibers were shown to have the highest affinities for the selected PAHs. The PA fiber was more suitable than the PDMS fiber for the determination of low-ring PAHs while high sensitivity of high-ring PAHs was observed when a 100-microm PDMS fiber was used. The method showed good linearity between 0.1 and 100 ng/ml with regression coefficients ranging from 0.94 to 0.999. The reproducibility of the measurements between fibers was found to be very good. The precisions of PA and PDMS fibers were from 3 to 24% and from 3 to 14%, respectively. Headspace SPME is a valid alternative for the determination of two- to five-ring PAHs. A working temperature of 60 degrees C provides significant enhancement in sensitivity of two- to five-ring PAHs having low vapor pressures (>10(-6) mmHg at 25 degrees C) (1 mmHg = 133.3 Pa) and low Henry's constants (>10 atm ml/mol) (1 atm = 1.01 x 10(5) Pa).  相似文献   

14.
A residue analytical method combining solid‐phase microextraction (SPME) with external micellar desorption (MD) and high‐performance liquid chromatography with diode array detector (HPLC‐DAD) has been developed and validated for the simultaneous determination of six pharmaceutical compounds, belonging to various therapeutic categories in water samples. Target compounds include antiinflamatory drugs (ibuprofen, ketoprofen and naproxen), an analgesic (phenazone), a lipid regulator (bezafibrate) and an antiepileptic (carbamazepine). A detailed study of the experimental conditions of extraction and desorption with different surfactants was performed in order to obtain the best results during instrumental analysis. Of the different fibers and surfactants investigated, 65 µm polydimethysiloxane‐divinilbenzene (PDMS‐DVB) fiber and polyoxyethylene 10 lauryl ether (POLE) and polyoxyethylene 6 lauryl ether (C12E6) as desorbing agents produced the optimal response to pharmaceutical residues. Recoveries obtained were generally higher than 80% and the variability of the method was below 16% for all compounds in both surfactants. Method detection limits were 0.05–12 ng mL?1 for POLE and 0.1–5 ng mL?1 for C12E6. The developed method was compared using external desorption with organic solvent and it was successfully applied to the determination of these pharmaceutical compounds in water samples from different origin. Solid‐phase microextraction with micellar desorption (SPME‐MD) represents a new approach for the extraction of different pharmaceutical compounds in natural waters because it combines shorter handling time, better efficiency, safety and more environmentally friendly process than the traditional methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Gaseous benzene, toluene, ethylbenzene and o‐xylene (BTEX) were extracted by using the divinylbenzene (DVB) particles (mesh sizes 60–80, 80–100 and 100–120) as sorbents packed in passive needle trap samplers (NTS). This study performed feasibility tests of these self‐designed DVB‐NTS as diffusive time‐weighted average (TWA) samplers and compared extraction efficiency with that of 100 mm polydimethylsiloxane‐solid phase microextration (PDMS‐SPME) fiber for sampling gaseous and particle‐bound volatile organic compounds (VOCs) from burning mosquito coils. Experimental results indicated that extraction rate of NTS is a reliable index in extracting VOCs. Additionally, comparisons of the NTS in extracting BTEX mass showed the NTS packed with the smallest diameters of adsorbent particles (100–120 mesh DVB) were the most effective. The mass of gaseous BTEX extracted by 100 μm PDMS‐SPME fiber were substantially lower than that extracted by DVB‐NTS of all meshes for the 30‐min TWA sampling of burning mosquito coils, and NTS packed with 100–120 mesh DVB adsorbed BTEX 50–120 ng BTEX. Particles clogging inside the packed phase of NTS inhibited VOC extraction performance after 3–5 samplings of burning particles, especially NTS packed with small‐diameter adsorbents.  相似文献   

16.
固相微萃取气质联用分析茉莉花的香气成分   总被引:1,自引:0,他引:1  
利用顶空固相微萃取技术,采用气质联用仪分析茉莉花的香气成分,在弱极性和极性毛细管色谱柱条件下,分别用PDMS、PDMS/DVB、PA三种萃取头富集香气,分离出100多种香气成分,鉴定出含量大于0.1%的55种组分,占香气成分的97%,三种萃取头所得主成分完全一致,均为芳樟醇、乙酸苄酯、反式-金合欢烯、顺式-苯甲酸-3-己烯酯和吲哚。  相似文献   

17.
A novel fast screening method was developed for the determination of polychlorinated biphenyls that are constituents of the commercial mixture, Aroclor 1260, in soil matrices by gas chromatography with mass spectrometry combined with solid‐phase microextraction. Nonequilibrium headspace solid‐phase microextraction with a 100 μm polydimethylsiloxane fiber was used to extract polychlorinated biphenyls from 0.5 g of soil matrix. The use of 2 mL of saturated potassium dichromate in 6 M sulfuric acid solution improved the reproducibility of the extractions and the mass transfer of the polychlorinated biphenyls from the soil matrix to the microextraction fiber via the headspace. The extraction time was 30 min at 100°C. The percent recoveries, which were evaluated using an Aroclor 1260 standard and liquid injection, were within the range of 54.9–65.7%. Two‐way extracted ion chromatogram data were used to construct calibration curves. The relative error was <±15% and the relative standard deviation was <15%, which are respective measures of the accuracy and precision. The method was validated with certified soil samples and the predicted concentrations for Aroclor 1260 agreed with the certified values. The method was demonstrated to be linear from 10 to 1000 ng/g for Aroclor 1260 in dry soil.  相似文献   

18.
《Analytical letters》2012,45(4):645-660
Abstract

A novel reproducible solid‐phase microextraction (SPME) coating was prepared on the surface of silanized silica fibers by molecularly imprinted polymerization using prometryn as template molecule. The structure and extraction performance of molecularly imprinted polymer (MIP) coating was studied with the scanning electron microscope and high performance liquid chromatography (HPLC). Specific selectivity was found with the prometryn MIP‐coated fiber to prometry and its structural analogues such as atrazine, simetryn, terbutylazin, ametryn, propazine and terbutryn. In contrast, these triazines could not be selectively extracted by the non‐imprinted polymer fiber or commercial polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB), polyacrylate (PA) fibers.  相似文献   

19.
The feasibility of direct-immersion (DI) solid-phase microextraction (SPME) and headspace (HS) SPME for the determination of high-ring polycyclic aromatic hydrocarbons (PAHs) (4- to 6-ring PAHs) in water and soil samples is studied. Three SPME fibers--100- and 30-microm polydimethylsiloxane (PDMS) and 85-microm polyacrylate (PA) fibers-are compared for the effective extraction of PAHs. Parameters affecting the sorption of PAHs into the fiber such as sampling time, sampling volume, and temperature are also evaluated. The extracted amounts of high-ring PAHs decrease with the decreasing of film thickness, and the 100-microm PDMS has the highest extraction efficiency than 85-microm PA and 30-microm PDMS fibers. Also, the extraction efficiency decreases with the increasing molecular weights of PAHs. Of the 10 high-ring PAHs, only fluoranthene and pyrene can reach equilibrium within 120 min at 25 degrees C for DI-SPME in a water sample. Increasing the temperature to 60 degrees C can increase the sensitivity of PAHs and shorten the equilibrium time. A 0.7- to 25-fold increase in peak area is obtained for DI-SPME when the working temperature is increased to 60 degrees C. For HS-SPME, the extraction efficiency of PAHs decrease when the headspace volume of the sampling system increases. All high-ring PAHs can be detected in a water sample by increasing the temperature to 80 degrees C. However, only 4- and 5-ring PAHs can be quantitated in a CRM soil sample when HS-SPME is used. The addition of a surfactant with high hydrophilic property can effectively enhance the sensitivity of high-ring PAHs. HS-SPME as well as DI-SPME with 100-microm PDMS or 85-microm PA fibers are shown to be suitable methods for analyzing high-ring PAHs in a water sample; however, this technique can only apply in a soil sample for PAHs having up to 5 rings.  相似文献   

20.
建立了顶空固相微萃取(HS-SPME)/气相色谱-质谱(GC-MS)同时测定液态化妆品中8种邻苯二甲酸酯类增塑剂(PAEs)的分析方法,并对萃取涂层、萃取温度、搅拌速率、盐浓度等参数进行了优化。最终采用65μm聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)固相微萃取纤维头,调节待萃取液盐浓度为360 g.L-1,在搅拌速率600 r/min及萃取温度90℃条件下萃取60 min,在250℃进样口解吸4 min后供GC-MS分析。结果表明,该方法对除邻苯二甲酸二苯酯(DPhP)外的7种目标化合物的线性范围为10~2 000μg.kg-1,检出限为0.7~13.6μg.kg-1,回收率为83%~97%,相对标准偏差(RSD)为2.5%~10.0%;由于DPhP在萃取涂层上的保留较弱,其回收率为70%,检出限为75μg.kg-1,RSD为13.9%。该方法能很好地富集基体中的目标化合物,满足液态化妆品中多种PAEs的分析要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号