首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary.  Polyphosphazenes form one of the most important and interesting classes of inorganic polymers having a backbone of alternating phosphorus and nitrogen atoms with phosphorus atom bearing two organic side groups. The most important feature of these polymers is the synthesis route which allows the side groups to be changed over a wide range to obtain a broad variety of products with different properties from elastomers to glasses, water soluble to hydrophobic polymers, bioinert to bioactive materials, and electrical insulators to conductors. In this paper, some novel applications of these polymers in biomedical materials and advanced devices are reviewed.  相似文献   

2.
Polyphosphazenes form one of the most important and interesting classes of inorganic polymers having a backbone of alternating phosphorus and nitrogen atoms with phosphorus atom bearing two organic side groups. The most important feature of these polymers is the synthesis route which allows the side groups to be changed over a wide range to obtain a broad variety of products with different properties from elastomers to glasses, water soluble to hydrophobic polymers, bioinert to bioactive materials, and electrical insulators to conductors. In this paper, some novel applications of these polymers in biomedical materials and advanced devices are reviewed.  相似文献   

3.
Hydrogels derived from both natural and synthetic polymers have gained significant scientific attention in recent years for their potential use as biomedical materials to treat human diseases. While a great deal of research efforts have been directed towards investigating polymeric hydrogels as matrices for drug delivery systems, examples of such hydrogels exhibiting intrinsic therapeutic properties are relatively less common. Characteristics of synthetic and natural polymers such as high molecular weight, diverse molecular architecture, chemical compositions, and modulated molecular weight distribution are unique to polymers. These characteristics of polymers can be utilized to discover a new generation of drugs and medical devices. For example, polymeric hydrogels can be restricted to the gastrointestinal tract, where they can selectively recognize, bind, and remove the targeted disease-causing substances from the body without causing any systemic toxicity that are associated with traditional small molecule drugs. Similarly hydrogels can be implanted at specific locations (such as knee and abdomen) to impart localized therapeutic benefits. The present article provides an overview of certain recent developments in the design and synthesis of functional hydrogels that have led to several polymer derived drugs and biomedical devices. Some of these examples include FDA-approved marketed products.  相似文献   

4.
Shape memory polymers (SMPs) are a class of responsive polymers that have attracted attention in designing biomedical devices because of their potential to improve minimally invasive surgeries. Use of porous SMPs in vascular grafts has been proposed because porosity aids in transfer of fluids through the graft and growth of vascular tissue. However, porosity also allows blood to leak through grafts so preclotting the materials is necessary. Here hydrogels have been synthesized from acrylic acid and N‐hydroxyethyl acrylamide and coated around a porous SMP produced from lactose functionalized polyurea‐urethanes. The biocompatibility of the polymers used to prepare the cross‐linked shape memory material is demonstrated using an in vitro cell assay. As expected, the hydrogel coating enhanced fluid uptake abilities without hindering the shape memory properties. These results indicate that hydrogels can be used in porous SMP materials without inhibiting the shape recovery of the material. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1389–1395  相似文献   

5.
Thermogels are temperature-responsive soft biomaterials with numerous biomedical applications. They possess high water content and can spontaneously gelate by forming non-covalent physical crosslinks between their constituent amphiphilic polymers when warmed. However, despite the ubiquity of salts in biological fluids and buffer media, the influence of salts on thermogelling polymers and the overall physical properties of the resulting hydrogels are poorly understood. Herein, we elucidate the effects of common inorganic salts on the gelation and micellization properties of a thermogelling polymer containing poly(ethylene glycol), poly(propylene glycol), and poly(caprolactone) components. The identity of the salts' anions and their concentrations was found to exhibit significant effects on the thermogel properties, in some cases being able to decrease the sol-to-gel phase transition by up to 10 °C. We demonstrate that these notable influences are likely brought about by the changes in solvation of both the polymer's hydrophobic and hydrophilic segments, as well as by direct interactions of poorly hydrated anions with the hydrophobic polymer segments. Our findings show that the effects of salts on amphiphilic thermogelling polymers are non-negligible and hence need to be taken into account for engineering and optimization of thermogel properties for different biomedical applications.  相似文献   

6.
Degradable polymers are a currently growing field of research for biomedical and materials science applications. The majority of such compounds are based on polyesters and polyamides. In contrast, their phosphorus‐containing counterparts are much less studied, in spite of their potential precise degradation profile and biocompatibility. Herein, the first library of poly(phosphorodiamidate)s (PPDAs) with two P?N bonds forming the polymer backbone and a pendant P?OR group is prepared through acyclic diene metathesis polymerization. They are designed to vary in their hydrophilicity and are compared with the structural analogues poly(phosphoester)s (PPEs) with respect to their thermal properties and degradation profiles. The degradation of PPDAs can be controlled precisely by the pH: under acidic conditions the P?N linkages in the polymer backbone are cleaved, whereas under basic conditions the pendant ester is cleaved selectively and almost no backbone degradation occurs. The PPDAs exhibit distinctively higher thermal stability (from thermogravimetric analysis (TGA)) and higher glass transition and/or melting temperatures (from differential scanning calorimetry (DSC)) compared with analogous PPEs. This renders this exotic class of phosphorus‐containing polymers as highly promising for the development of future drug carriers or tissue engineering scaffolds.  相似文献   

7.
Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when timely biodegradation is required. Despite there being, in principle, an entire periodic table to choose from, with the obvious exception of silicones, nearly all known synthetic polymers are combinations of carbon, nitrogen, and oxygen in the main chain. Expanding this to main-group heteroatoms can open the way to novel material properties. Herein the authors report on research to incorporate the chemically versatile and abundant silicon and phosphorus into polymers to induce cleavability into the polymer main chain. Less stable polymers, which degrade in a timely manner in mild biological environments, have considerable potential in biomedical applications. Herein the basic chemistry behind these materials is described and some recent studies into their medical applications are highlighted.  相似文献   

8.
Poly(organophosphazenes)--unusual new high polymers.   总被引:5,自引:0,他引:5  
An inorganic-backbone high polymer system based on alternating phosphorus and nitrogen atoms promises to solve many of the problems hitherto associated with conventional organic polymers. The chemistry, structure, biomedical, and technological aspects of these polymers are reviewed.  相似文献   

9.
Injectable hydrogels with biodegradability have in situ formability which in vitro/in vivo allows an effective and homogeneous encapsulation of drugs/cells, and convenient in vivo surgical operation in a minimally invasive way, causing smaller scar size and less pain for patients. Therefore, they have found a variety of biomedical applications, such as drug delivery, cell encapsulation, and tissue engineering. This critical review systematically summarizes the recent progresses on biodegradable and injectable hydrogels fabricated from natural polymers (chitosan, hyaluronic acid, alginates, gelatin, heparin, chondroitin sulfate, etc.) and biodegradable synthetic polymers (polypeptides, polyesters, polyphosphazenes, etc.). The review includes the novel naturally based hydrogels with high potential for biomedical applications developed in the past five years which integrate the excellent biocompatibility of natural polymers/synthetic polypeptides with structural controllability via chemical modification. The gelation and biodegradation which are two key factors to affect the cell fate or drug delivery are highlighted. A brief outlook on the future of injectable and biodegradable hydrogels is also presented (326 references).  相似文献   

10.
多孔水凝胶研究进展   总被引:2,自引:0,他引:2  
水凝胶是亲水性而又不溶于水的高分子聚合物材料,因其独特的吸水、保水和仿生特性而受到材料科学和生物医学工作者的关注。将多孔结构引入水凝胶可以极大地提高其溶胀率、溶胀速率和刺激敏感性。本文结合作者实验室开展的波聚合法制备多孔水凝胶的研究工作,较全面地介绍了国内外多孔水凝胶材料的研究现状及其在生物医药领域的应用,并对其发展前景进行了展望。  相似文献   

11.
In recent years, intelligent hydrogels which can change their swelling behavior and other properties in response to environmental stimuli such as temperature, pH, solvent composition and electric fields, have attracted great interest. The hydrogels based on polysaccharides incorporated with thermo-responsive polymers have shown unique properties such as biocompatibility, biodegradability, and biological functions in addition to the stimuli-responsive characters. These "smart" hydrogels exhibit single or multiple stimuli-responsive characters which could be used in biomedical applications, including controlled drug delivery, bioengineering or tissue engineering. This review focuses on the recent developments and future trends dealing with stimuli-responsive hydrogels based on grafting/blending of polysaccharides such as chitosan, alginate, cellulose, dextran and their derivatives with thermo-sensitive polymers. This review also screens the current applications of these hydrogels in the fields of drug delivery, tissue engineering and wound healing.  相似文献   

12.
Fluorescent polymeric materials such as hydrogels and particles have been attracting attention in many biomedical applications including bio-imaging, optical sensing, tissue engineering, due to their good biocompatibility, biodegradability, and advanced optical property. This review article aims at summarizing recent progress in fluorescent hydrogels and particles based on natural polymers or natural-synthetic hybrid polymers as the building blocks with a concentration on their bio-imaging-related applications. The challenges and future perspectives for the development of natural or natural-synthetic hybrid polymer-based fluorescent hydrogels and particles are also presented.  相似文献   

13.
Polysaccharides based hydrogels show several peculiar properties which can be so reassumed: • Capability to absorb a great amount of water once immersed in biological fluids, assuming, consequently, a structure similar to extracellular matrix or biological tissue • Tissotropic property, i.e. possibility to be injected through a needle without lose of their rheological properties. These fundamental properties make them ideal materials for several biomedical applications, such as cellular scaffold, coatings for biomedical disposals, treatments for different diseases, controlled release of drugs, etc. Hyaluronane, Carboxymethyl cellulose and Alginic acid based 50% hydrogels (i.e. 50% of the carboxylate groups present in the macromolecule chain were involved in the cross-linking reaction) are synthesised. Their effectiveness in promoting cells adhesion and proliferation was verified. Furthermore the possibility of injecting and sterilising hydrogels permitted to test the effect of Hyal 50% in the osteoarthritis therapy. It was found that the in vivo effect of Hyal 50% in the treatment of surgically created chondral defect in the rabbit knee was positive. These materials can be both chemically and morphologically modified. In fact, the insertion of sulphate groups increase their hemocompatibility as demonstred by the increase of TT (time necessary to turn the fibrinogen to thrombin). Furthermore microporous hydrogels were obtained and tested as drug controlled release systems.  相似文献   

14.
Novel superabsorbent hydrogels were prepared successfully from carboxymethylcellulose sodium (CMC) and cellulose in the NaOH/urea aqueous system by using epichlorohydrin (ECH) as cross-linker. The structure and morphology of the hydrogels were characterized by FT-IR spectroscope, thermogravimetric analysis and scanning electron microscope. The results revealed that the CMC contributed to the enhanced size of pore, whereas cellulose as a strong backbone in the hydrogel to support it for keeping its appearance. Their equilibrium swelling ratio in distilled water and different physiological fluids were evaluated, indicating the maximum swelling ratio in water reached an exciting level of 1000 as the hydrogels still keeping a steady appearance. Moreover, the hydrogels exhibited smart swelling and shrinking in NaCl or CaCl2 aqueous solution, as well as the release behavior of bovine serum albumin (BSA) that could be controlled by changing CMC content. The cellulose-based hydrogels are promising for the applications in the biomaterials area.  相似文献   

15.
Novel polyelectrolytes have been synthesized by grafting sulfobetaine side chains onto hydroxypropylcellulose backbone. Polymers with various degrees of grafting have been obtained. The polymers do not interact with model anionic, cationic and zwitterionic surfactants as found in fluorescence studies using pyrene as a molecular probe. Dynamic light scattering (DLS) studies indicated that in the graft polymer solution two types of polymers are present. The films were formed from the grafted polymers. Using atomic force microscopy (AFM) technique it was found that they are resistant to the adhesion of proteins and can be used for the preparation of antiadhesive surfaces which may find biomedical applications.  相似文献   

16.
Hydrogels and nanofibers have been firmly established as go-to materials for various biomedical applications. They have been mostly utilized separately, rarely together, because of their distinctive attributes and shortcomings. However, the potential benefits of integrating nanofibers with hydrogels to synergistically combine their functionalities while attenuating their drawbacks are increasingly recognized. Compared to other nanocomposite materials, incorporating nanofibers into hydrogel has the distinct advantage of emulating the hierarchical structure of natural extracellular environment needed for cell and tissue culture. The most important technological aspect of developing “nanofiber-composite hydrogel” is generating nanofibers made of various polymers that are cross-linked and short enough to maintain stable dispersion in hydrated environment. In this review, recent research efforts to develop nanofiber-composite hydrogels are presented, with added emphasis on nanofiber processing techniques. Several notable examples of implementing nanofiber-composite hydrogels for biomedical applications are also introduced.  相似文献   

17.
Injectable biodegradable copolymer hydrogels, which exhibit a sol–gel phase transition in response to external stimuli, such as temperature changes or both pH and temperature (pH/temperature) alterations, have found a number of uses in biomedical and pharmaceutical applications, such as drug delivery, cell growth, and tissue engineering. These hydrogels can be used in simple pharmaceutical formulations that can be prepared by mixing the hydrogel with drugs, proteins, or cells. Such formulations are administered in a straightforward manner, through site‐specific control of release behavior, and the hydrogels are compatible with biological systems. This review will provide a summary of recent progress in biodegradable temperature‐sensitive polymers including polyesters, polyphosphazenes, polypeptides, and chitosan, and pH/temperature‐sensitive polymers such as sulfamethazine‐, poly(β‐amino ester)‐, poly(amino urethane)‐, and poly(amidoamine)‐based polymers. The advantages of pH/temperature‐sensitive polymers over simple temperature‐sensitive polymers are also discussed. A perspective on the future of injectable biodegradable hydrogels is offered.

  相似文献   


18.
Double network (DN) hydrogels as one kind of tough gels have attracted extensive attention for their potential applications in biomedical and load-bearing fields. Herein, we import more functions like shape memory into the conventional tough DN hydrogel system. We synthesize the PEG-PDAC/P(AAm-co-AAc) DN hydrogels, of which the first network is a well-defined PEG (polyethylene glycol) network loaded with PDAC (poly(acryloyloxyethyltrimethyl ammonium chloride)) strands, while the second network is formed by copolymerizing AAm (acrylamide) with AAc (acrylic acid) and cross-linker MBAA (N, N'-methylenebisacrylamide). The PEG-PDAC/P(AAm-co-AAc) DN gels exhibits high mechanical strength. The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m3, respectively. Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network, the PEG-PDAC/P(AAm-coAAc) DN hydrogels use P(AAm-co-AAc), a weak polyelectrolyte, as the second network. The AAc units serve as the coordination points with Fe3+ ions and physically crosslink the second network, which realizes the shape memory property activated by the reducing ability of ascorbic acid. Our results indicate that the high mechanical strength and shape memory properties, probably the two most important characters related to the potential application of the hydrogels, can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.  相似文献   

19.
Peptides and polymers are the “elite” building blocks in hydrogel fabrication where the typical approach consists of coupling specific peptide sequences (cell adhesive and/or enzymatically cleavable) to polymer chains aiming to obtain controlled cell responses (adhesion, migration, differentiation). However, the use of polymers and peptides as structural components for fabricating supramolecular hydrogels is less well established. Here, the literature on the design of peptide/polymer systems for self‐assembly into hybrid hydrogels, as either peptide‐polymer conjugates or combining both components individually, is reviewed. The properties (stiffness, mesh structure, responsiveness, and biocompatibility) of the hydrogels are then discussed from the viewpoint of their potential biomedical applications.  相似文献   

20.
Hydrogels were the first biomaterials designed for clinical use. Their discovery and applications as soft contact lenses and implants are presented. This early hydrogel research served as a foundation for the expansion of biomedical polymers research into new directions: design of stimuli sensitive hydrogels that abruptly change their properties upon application of an external stimulus (pH, temperature, solvent, electrical field, biorecognition) and hydrogels as carriers for the delivery of drugs, peptides, and proteins. Finally, pathways to self‐assembly of block and graft copolymers into hydrogels of precise 3D structures are introduced. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5929–5946, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号