首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The solvation structure of magnesium, zinc(II), and alkaline earth metal ions in N,N‐dimethylformamide (DMF) and N,N‐dimethylacetamide (DMA), and their mixtures has been studied by means of Raman spectroscopy and DFT calculations. The solvation number is revealed to be 6, 7, 8, and 8 for Mg2+, Ca2+, Sr2+, and Ba2+, respectively, in both DMF and DMA. The δ (O C N) vibration of DMF shifts to a higher wavenumber upon binding to the metal ions and the shift Δν(= νbound − νfree) becomes larger, when the ionic radius of the metal ion becomes smaller. The ν (N CH3) vibration of DMA also shifts to a higher wavenumber upon binding to the metal ions. However, the shift Δν saturates for small ions, as well as the transition‐metal (II) ions, implying that steric congestion among solvent molecules takes place in the coordination sphere. It is also indicated that, despite the magnesium ion having practically the same ionic radius as the zinc(II) ion of six‐coordination, their solvation numbers in DMA are significantly different. DFT calculations for these metalsolvate clusters of varying solvation numbers revealed that not only solvent–solvent interaction through space but also the bonding nature of the metal ion plays an essential role in the steric congestion. The individual solvation number and the Raman shift Δν in DMF–DMA mixtures indicate that steric congestion is significant for the magnesium ion, but not appreciable for calcium, strontium, and barium ions, despite the solvation number of these metal ions being large. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
It is generally recognized that light rare earths change their valence from 2 to 3 when forming a bulk metal while remaining divalent at the surface. However, performed DFT calculations ultimately indicate that the higher-binding-energy peaks in photoemission spectra (like the −5.3 eV peak for Sm), characteristic of the trivalent 4fn−15d1 configuration, correspond not to the ground state, but to excited states induced by radiation. This means that the trivalent state is not inherent for the bulk of divalent rare earths, and therefore they do not become trivalent.  相似文献   

3.
The short‐time structural dynamics of 4‐formaldehyde imidazole and imidazole in light absorbing S2(ππ*) state were studied by using resonance Raman spectroscopy and quantum mechanical calculations. The vibrational spectra and ultraviolet absorption spectra of 4‐formaldehyde imidazole were assigned. The resonance Raman spectra of imidazole and 4‐formaldehyde imidazole were obtained in methanol and acetonitrile with excitation wavelengths in resonance with the first intense absorption band to probe the short‐time structural dynamics. complete active space self‐consistent field calculations were carried out to determine the minimal singlet excitation energies and structures of S1(nπ*), S2(ππ*), and conical intersection point S1(nπ*)/S2(ππ*). The results show that the A‐band structural dynamics of imidazole is predominantly along the N1H/C4H/C5H/C2H in‐plane bending reaction coordinate, which suggests that excited state proton or hydrogen transfer reaction takes place somewhere nearby the Franck–Condon region. The significant difference in the short‐time structural dynamics between 4‐formaldehyde imidazole and imidazole is observed, and the underlying mechanism is interpreted in term of excited state charge redistribution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A computational study of the stable conformations and gas‐phase enthalpies of formation at 25 °C of the title compounds has been carried out by G3(MP2)//B3LYP calculations. The work stems from our early observations on the thermodynamic and NMR spectroscopic properties of 2‐methylenetetrahydropyran and related compounds suggesting a dominating chair conformation, with poor p–π overlap in the ? O? C?C moiety, for these compounds. Besides computational verification of the chair conformation of 2‐methylenetetrahydropyran, the work was extended to find out the stable conformations of a number of other related compounds and to evaluate the relative stabilities of the various conformers. Another important goal of the work was the estimation of the gas‐phase enthalpies of formation of the present compounds, for which such literature data are scarce. A significant error in the literature value of the enthalpy of formation of methylenecyclohexane was found. Finally, the relative enthalpy levels of the isomeric compounds of this work are discussed. The high thermodynamic stability of the compounds containing an ester functional group, ? O? C?O, relative to the stability of isomeric compounds with an ? O? C?C moiety in place of the ester function, is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The N‐(2′‐furyl)‐imidazole ( 1 ) has been prepared and characterized using infrared, Raman and multidimensional nuclear magnetic resonance spectroscopies. Theoretical calculations have been carried out by employing the Density Functional Theory (DFT) method, in order to optimize the geometry of their two conformers in the gas phase and to support the assignments of the vibrational bands of 1 to their normal modes. For a complete assignment of the compound, DFT calculations were combined with Scaled Quamtum Mecanic Force Field (SQMFF) methodology in order to fit the theoretical wavenumber values to the experimental one. Furthermore, Natural Bond Orbital (NBO) and topological properties by Atoms In Molecules (AIM) calculations were performed to analyze the nature and magnitude of the intramolecular interactions. The result reveals that two conformers are expected in liquid phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The gas‐phase elimination kinetics of the title compounds were carried out in a static reaction system and seasoned with allyl bromide. The working temperature and pressure ranges were 200–280 °C and 22–201.5 Torr, respectively. The reactions are homogeneous, unimolecular, and follow a first‐order rate law. These substrates produce isobutene and corresponding carbamic acid in the rate‐determining step. The unstable carbamic acid intermediate rapidly decarboxylates through a four‐membered cyclic transition state (TS) to give the corresponding organic nitrogen compound. The temperature dependence of the rate coefficients is expressed by the following Arrhenius equations: for tert‐butyl carbamate logk1 (s?1) = (13.02 ± 0.46) – (161.6 ± 4.7) kJ/mol(2.303 RT)?1, for tert‐butyl N‐hydroxycarbamate logk1 (s?1) = (12.52 ± 0.11) – (147.8 ± 1.1) kJ/mol(2.303 RT)?1, and for 1‐(tert‐butoxycarbonyl)‐imidazole logk1 (s?1) = (11.63 ± 0.21)–(134.9 ± 2.0) kJ/mol(2.303 RT)?1. Theoretical studies of these elimination were performed at Møller–Plesset MP2/6‐31G and DFT B3LYP/6‐31G(d), B3LYP/6‐31G(d,p) levels of theory. The calculated bond orders, NBO charges, and synchronicity (Sy) indicate that these reactions are concerted, slightly asynchronous, and proceed through a six‐membered cyclic TS type. Results for estimated kinetic and thermodynamic parameters are discussed in terms of the proposed reaction mechanism and TS structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐fluoro‐N‐(2‐hydroxy‐4‐nitrophenyl)benzamide were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red‐shift of the NH‐stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO‐stretching mode gives the charge transfer interaction through a π‐conjugated path. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The competitive 1,5‐electrocyclization versus intramolecular 1,5‐proton shift in imidazolium allylides and imidazolium 2‐phosphaallylides has been investigated theoretically at the DFT (B3LYP/6‐311 + +G**//B3LYP/6‐31G**) level. 1,5‐Electrocyclization follows pericyclic mechanism and its activation barrier is lower than that for the pseudopericyclic mechanism by ~5–6 kcal mol?1. The activation barriers for 1,5‐electrocyclization of imidazolium 2‐phosphaallylides are found to be smaller than those for their nonphosphorus analogues by ~3–5 kcal mol?1. There appears to be a good correlation between the activation barrier for intramolecular 1,5‐proton shift and the density of the negative charge at C8, except for the ylides having fluorine substituent at this position ( 7b and 8b ). The presence of fluorine atom reduces the density of the negative charge at C8 (in 7b it becomes positively charged) and thus raises the activation barrier. The ylides 7f and 8f having CF3 group at C8, in preference to the 1,5‐proton shift, follow an alternative route leading to different carbenes which is accompanied by the loss of HF. The carbenes Pr 7 , 8b – e resulting from intramolecular 1,5‐proton shift have a strong tendency to undergo intramolecular SN2 type reaction, the activation barrier being 7–28 kcal mol?1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The conformational analysis of the first representative of the Si‐alkoxy substituted six‐membered Si,N‐heterocycles, 1,3‐dimethyl‐3‐isopropoxy‐3‐silapiperidine, was performed by low‐temperature 1H and 13C NMR spectroscopy and DFT theoretical calculations. In contrast to the expectations from the conformational energies of methyl and alkoxy substituents, the Meaxi‐PrOeq conformer was found to predominate in the conformational equilibrium in the ratio Meaxi‐PrOeq : Meeqi‐PrOax of ca. 2 : 1 as from the 1H and 13C NMR study. The thermodynamic parameters obtained by the complete line shape analysis showed that the main contribution to the barrier to ring inversion originates from the entropy term of the free energy of activation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Contrary to the typical nucleophilic substitution, occurring on the sulfur atom of 4‐methyl‐1,2,4‐ triazol‐3‐thiole, the reaction with formaldehyde leads to the formation of the N? C bond rather than the S? C bond. The mechanism of this reaction has been characterized theoretically. Calculations indicate that the reaction proceeds via a cyclic transition state involving one solvent molecule with the Gibbs free activation energy of only 2 kcal/mol. The alternative pathway that leads to the S? C bond formation is about 5 kcal/mol more energetically demanding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Fourier transform (FT)‐Raman and Fourier transform infrared (FT‐IR) spectra of 3‐{[(4‐fluorophenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using the B3LYP/6‐31G* basis and compared with the experimental data. The prepared compound was identified by NMR and mass spectra. The simultaneous IR and Raman activation of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability and infrared intensities are reported. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
An accurate crystal structure determination has provided evidence for a planar conformation for 3‐acetylamino‐5‐methyl‐1,2,4‐oxadiazole ( 5 ), in agreement with quantum‐mechanical calculations in the gas phase. In the crystal, a series of strong intermolecular N7H7….O9 hydrogen bonds link the amido groups of different molecules, causing the formation of infinite parallel ordered chains. The effect of the DMSO solvent on the energy and charge distribution of compound 5 and on its relevant 5 ? anion, involved in a fully degenerate rearrangement (FDR), has been deepened by quantum‐mechanical DFT calculations. The calculated energy barrier for the FDR increases in going from in vacuo to DMSO, in agreement with previsions based on the Hughes and Ingold rules concerning the nucleophilic substitution of an anionic reagent (the deprotonated amido group in the side chain) on a neutral substrate (the 1,2,4‐oxadiazole ring). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Infrared, Raman and surface‐enhanced Raman scattering (SERS) spectra of 3‐(1‐phenylpropan‐2‐ylamino)propanenitrile (fenproporex) have been recorded. Density functional theory (DFT) with the B3LYP functional was used for optimizations of ground state geometries and simulation of Raman and SERS vibrational spectra of this molecule. Bands of the vibrational spectra were assigned in detail. The comparison of SERS spectra obtained by using colloidal silver and gold nanoparticles with the corresponding Raman spectrum reveals enhancement and shifts in bands, suggesting a possible partial charge‐transfer mechanism in the SERS effect. Information about the orientation of fenproporex on the nanometer‐sized metal structures is also obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐ethyl‐N‐(2′‐hydroxy‐5′‐nitrophenyl)benzamide were recorded and analyzed. A surface‐enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO stretching mode gives the charge transfer interaction through a π‐conjugated path. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface, which affects the orientation and metal molecule interaction. The first hyperpolarizability and predicted infrared intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive subject for future studies of nonlinear optics. Optimized geometrical parameters of the title compound are in agreement with reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
We have studied 2‐(2‐benzofuranyl)‐2‐imidazoline (BFI) and characterized it by using infrared and Raman spectroscopies. The density functional theory (DFT) method together with Pople's basis set shows that two conformers exist for the title molecule as have been theoretically determined in the gas phase and that, probably, an average of both conformations is present in the solid phase. The harmonic vibrational wavenumbers for the optimized geometry of the latter conformer were calculated at the B3LYP/6‐31G* level in the proximity of the isolated molecule. For a complete assignment of the IR and Raman spectra in the compound in the solid phase, DFT calculations were combined with Pulay's scaled quantum mechanics force field (SQMFF) methodology in order to fit the theoretical wavenumbers to the experimental ones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The time‐dependent density functional theory method was performed to investigate the excited‐state hydrogen‐bonding dynamics of N‐(2‐hydroxyethyl)‐1,8‐naphthalimide (2a) and N‐(3‐hydroxyethyl)‐1,8‐naphthalimide (3a) in methanol (meoh) solution. The ground and excited‐state geometry optimizations, electronic excitation energies, and corresponding oscillation strengths of the low‐lying electronically excited states for the complexes 2a + 2meoh and 3a + 2meoh as well as their monomers 2a and 3a were calculated by density functional theory and time‐dependent density functional theory methods, respectively. We demonstrated that the three intermolecular hydrogen bonds of 2a + 2meoh and 3a + 2meoh are strengthened after excitation to the S1 state, and thus induce electronic spectral redshift. Moreover, the electronic excitation energies of the hydrogen‐bonded complexes in S1 state are correspondingly decreased compared with those of their corresponding monomer 2a and 3a. In addition, the intramolecular charge transfer of the S1 state for complexes 2a + 2meoh and 3a + 2meoh were theoretically investigated by analysis of molecular orbital. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Aromatic interactions are important stabilizing forces in proteins but are difficult to detect in the absence of high‐resolution structures. Ultraviolet resonance Raman spectroscopy is used to probe the vibrational signatures of aromatic interactions in TrpZip2, a synthetic β‐hairpin peptide that is stabilized by edge‐to‐face and face‐to‐face tryptophan π‐π interactions. The vibrational markers of isolated edge‐to‐face π‐π interactions are investigated in the related β‐hairpin peptide W2W11. The bands that comprise the Fermi doublet exhibit systematic shifts in position and intensity for TrpZip2 and W2W11 relative to the model peptide, W2W9, which does not form aromatic interactions. Additionally, hypochromism of the Bb absorption band of tryptophan in TrpZip2 leads to a decrease in the relative Raman cross‐sections of Bb‐coupled Raman bands. These results reveal spectral markers for stabilizing tryptophan π‐π interactions and indicate that ultraviolet resonance Raman may be an important tool for the characterization of these biological forces. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Infrared (IR) and Raman spectra were obtained for N,N′‐dicyclohexylcarbodiimide (DCC) in the solid state and in CHCl3 solution. Structures and vibrational spectra of isolated, gas‐phase DCC molecules with C2 and Ci symmetries, computed at the B3‐LYP/cc‐pVTZ level, show that the IR and Raman spectra provide convincing evidence for a C2 structure in both the solid state and in CHCl3 solution. Using a scaled quantum‐chemical force field, these density functional theory calculations have provided detailed assignments of the observed IR and Raman bands in terms of potential energy distributions. Comparison of solid‐state and solution spectra, together with a Raman study of the melting behaviour of DCC, revealed that no solid‐state effects were evident in the spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Experimental vibrational spectroscopic studies and density functional theory (DFT) calculations of the di‐amino acid peptide derivatives α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu have been undertaken. Raman and infrared spectra have been recorded for samples in the solid state. DFT simulations were conducted using the B3‐LYP correlation functional and the cc‐pVDZ basis set to determine energy minimized/geometry optimized structures (based on a single isolated molecule in the gaseous state). Normal coordinate calculations have provided vibrational assignments for fundamental modes, including their potential energy distributions. Significant differences are observed between α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu both in the computed structures and in the vibrational spectra. The combination of experimental and calculated spectra provide an insight into the structural and vibrational spectroscopic properties of di‐amino acid peptide derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号