首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultra‐small Pd nanoparticles (UNPs) represent a distinctive type of nanomaterial making them very attractive for a range of applications. Herein, chiral sugar‐substituted N‐heterocyclic carbenes (NHCs) with various lengths of alkyl chain (sugar‐NHCs‐nCnH2n+1) were first used to prepare water‐soluble Pd@NHCs‐sugar UNPs via an efficient ligand‐exchange strategy, which can be handled under air and are stable over 10 months. The Pd@NHCs‐sugar UNPs were highly monodisperse, with tunable core diameters from 1.7 to 2.1 nm, and an effect of the particle size on the N‐substituted aliphatic chains was observed. To investigate the accessibility of the surface, the Pd@NHCs‐sugar UNPs were studied as catalysts for C–C coupling reaction in eco‐friendly ethanol aqueous solution without any precipitation of metallic Pd. The presence of the longest aliphatic group in the Pd@NHCs‐sugar UNPs imparts to them the highest catalyst activity (turnover number and turnover frequency up to 196 000 and 3 920 000 h?1).  相似文献   

2.
A visible‐light‐driven Minisci protocol that employs an inexpensive earth‐abundant metal catalyst, decacarbonyldimanganese Mn2(CO)10, to generate alkyl radicals from alkyl iodides has been developed. This Minisci protocol is compatible with a wide array of sensitive functional groups, including oxetanes, sugar moieties, azetidines, tert ‐butyl carbamates (Boc‐group), cyclobutanes, and spirocycles. The robustness of this protocol is demonstrated on the late‐stage functionalization of complex nitrogen‐containing drugs. Photophysical and DFT studies indicate a light‐initiated chain reaction mechanism propagated by .Mn(CO)5. The rate‐limiting step is the iodine abstraction from an alkyl iodide by .Mn(CO)5.  相似文献   

3.
An efficient solution‐phase synthesis of rac‐15‐deoxy‐Δ12,14‐PGJ2 (15dPGJ2) derivatives that contain variable α and ω chains based on a polymer‐assisted strategy and their neurite‐outgrowth‐promoting activity are described. The strategy for the synthesis of PGJ2 derivatives involves the use of a vinyl iodide bearing cyclopentenone as a key intermediate, which undergoes Suzuki–Miyaura coupling and subsequent Lewis acid catalyzed aldol condensation for incorporation of the ω and α chains, respectively. For easy access to the PGJ2 derivatives, a polymer‐supported catalyst and scavengers were adapted for use in these four diverse steps, in which workup and purification can be performed by simple filtration of the solid‐supported reagents. By using this methodology, we succeeded in the synthesis of 16 PGJ2 derivatives with four alkyl boranes and four aldehydes. The neurite‐outgrowth‐promoting activity of the 16 synthetic compounds in PC12 cells revealed that the side‐chains play a major role in modulating their biological activity. The carboxylic acid on the α chain improved the biological activity, although it was not absolutely required. Furthermore, a PGJ2 derivative with a phenyl moiety on the ω chain was found to exhibit an activity comparable to that of natural 15dPGJ2.  相似文献   

4.
Ammonium N‐acetyl‐l ‐threoninate, NH4+·C6H10NO4?, and methyl­ammonium N‐acetyl‐l ‐threoninate, CH6N+·­C6H10NO4?, crystallize in the orthorhombic P212121 and monoclinic P21 space groups, respectively. The two crystals present the same packing features consisting of infinite ribbons of screw‐related N‐acetyl‐l ‐threoninate anions linked together through pairs of hydrogen bonds. The cations interconnect neighbouring ribbons of anions involving all the nitrogen‐H atoms in three‐dimensional networks of hydrogen bonds. The hydrogen‐bond patterns include asymmetric `three‐centred' systems. In both structures, the Thr side chain is in the favoured (g?g+) conformation.  相似文献   

5.
The title compound [systematic name: 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐ethynylpyrimidin‐2(1H)‐one], C11H13N3O4, shows two conformations in the crystalline state. The N‐glycosylic bonds of both conformers adopt similar conformations, with χ = −149.2 (1)° for conformer (I‐1) and −151.4 (1)° for conformer (I‐2), both in the anti range. The sugar residue of (I‐1) shows a C2′‐endo envelope conformation (2E, S‐type), with P = 164.7 (1)° and τm = 36.9 (1)°, while (I‐2) shows a major C3′‐exo sugar pucker (C3′‐exo‐C2′‐endo, 3T2, S‐type), with P = 189.2 (1)° and τm = 33.3 (1)°. Both conformers participate in the formation of a layered three‐dimensional crystal structure with a chain‐like arrangement of the conformers. The ethynyl groups do not participate in hydrogen bonding, but are arranged in proximal positions.  相似文献   

6.
A method coupling high‐performance liquid chromatography with hybrid ion trap time‐of‐flight mass spectrometry (TOFMS) using an electrospray ionization source was firstly used to characterize ten major pregnane glycosides including one novel compound auriculoside IV from the roots of Cynanchum auriculatum Royle ex Wight. In the MS/MS spectra, fragmentation reactions of the [M+Na]+ were recorded to provide abundant structural information on the aglycone and glycosyl moieties. Experiments using TOFMS allowed us to obtain precise elemental compositions of molecular ions and subsequent product ions with errors less than 6 ppm. The pregnane glycosides in C. auriculatum were classified into two major core groups: one is caudatin characterized by the neutral loss of one ikemamic acid molecule (128 Da) from the precursor ion, and the other is kidjoranin characterized by the neutral loss of cinnamic acid (148 Da) from the precursor ion. Meanwhile, a series of sugar‐chain fragment ions provided valuable information about the compositions of the sugar residues and the sequences of the sugar chain. Logical fragmentation pathways for pregnane glycosides have been proposed and are useful for the identification of these compounds in natural products especially when there are no reference compounds available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The interaction between cucuribit[8]uril (Q[8]) and a series of 4‐pyrrolidinopyridinium salts bearing aliphatic substituents at the pyridinium nitrogen, namely 4‐(C4H8N)C5H5NRBr, where R=Et (g1), n‐butyl (g2), n‐pentyl (g3), n‐hexyl (g4), n‐octyl (g5), n‐dodecyl (g6), has been studied in aqueous solution by 1H NMR spectroscopy, electronic absorption spectroscopy, isothermal titration calorimetry and mass spectrometry. Single crystal X‐ray diffraction revealed the structure of the host–guest complexes for g1, g2, g3, and g5. In each case, the Q[8] contains two guest molecules in a centrosymmetric dimer. The orientation of the guest molecule changes as the alkyl chain increases in length. Interestingly, in the solid state, the inclusion complexes identified are different from those observed in solution, and furthermore, in the case of g3, Q[8] exhibits two different interactions with the guest. In solution, the length of the alkyl chain plays a significant role in determining the type of host–guest interaction present.  相似文献   

8.
Novel copolycarbonates containing 1,4:3,6‐dianhydro‐D ‐glucitol or 1,4:3,6‐dianhydro‐D ‐mannitol units, with various methylene chain lengths, were synthesized by bulk and solution polycondensations, of several combinations of carbonate‐modified sugar derivatives and aliphatic diols. Bulk polycondensations of 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(phenoxycarbonyl)‐D ‐glucitol or 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(phenoxycarbonyl)‐D ‐mannitol with four α,ω‐alkanediols having methylene chain lengths of 4, 6, 8, and 10, respectively, at 180 °C afforded the corresponding copolycarbonates with number‐average molecular weight (Mn) values up to 19.2 × 103. 13C NMR analysis disclosed that these polymers had scrambled structures in which the sugar carbonate and aliphatic carbonate moieties were nearly randomly distributed along a polymer chain. However, solution polycondensations between 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(p‐nitrophenoxycarbonyl)‐D ‐glucitol or 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(p‐nitrophenoxycarbonyl)‐D ‐mannitol, and the α,ω‐alkanediols in sulfolane or dimethyl sulfoxide at 60 °C gave well‐defined copolycarbonates having regular structures consisting of alternating sugar carbonate and aliphatic carbonate moieties with Mn values up to 33.8 × 103. Differential scanning calorimetry demonstrated that all the copolycarbonates were amorphous with glass‐transition temperatures ranging from 1 to 65 °C, which decreased with increasing lengths of the methylene chain of the aliphatic diols. Additionally, all the copolycarbonates were stable up to 310–330 °C as estimated by thermogravimetric analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2312–2321, 2003  相似文献   

9.
In 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (6‐aza‐2′‐deoxy­uridine), C8H11N3O5, (I), the conformation of the glycosylic bond is between anti and high‐anti [χ = −94.0 (3)°], whereas the derivative 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐N4‐(2‐methoxy­benzoyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (N3‐anisoyl‐6‐aza‐2′‐deoxy­uridine), C16H17N3O7, (II), displays a high‐anti conformation [χ = −86.4 (3)°]. The furanosyl moiety in (I) adopts the S‐type sugar pucker (2T3), with P = 188.1 (2)° and τm = 40.3 (2)°, while the sugar pucker in (II) is N (3T4), with P = 36.1 (3)° and τm = 33.5 (2)°. The crystal structures of (I) and (II) are stabilized by inter­molecular N—H⋯O and O—H⋯O inter­actions.  相似文献   

10.
In the title compound, 2‐(2‐deoxy‐2‐fluoro‐β‐d ‐arabino­fur­anosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione, C8H10FN3O5, the torsion angle of the N‐gly­cosylic bond is anti [χ = −125.37 (13)°]. The furan­ose moiety adopts the N‐type sugar pucker (3T2), with P = 359.2° and τm = 31.4°. The conformation around the C4′—C5′ bond is antiperiplanar (trans), with a torsion angle γ of 177.00 (11)°. A network is formed via hydrogen bonds from the nucleobases to the sugar residues, as well as through hydrogen bonds between the sugar moieties.  相似文献   

11.
Achiral {2‐[2‐(η5‐cyclopentadienyl)‐2‐methylpropyl]‐1H‐imidazolyl‐κN1}bis(N,N‐diethylamido‐κN)titanium(IV), [Ti(C4H10N)2(C12H14N2)], (I), and closely related racemic (SR)‐{2‐[(η5‐cyclopentadienyl)(phenyl)methyl]‐1H‐imidazolyl‐κN1}bis(N,N‐diethylamido‐κN)titanium(IV), [Ti(C4H10N)2(C15H12N2)], (II), have been prepared by direct reactions of Ti(NEt2)4 and the corresponding 1H‐imidazol‐2‐yl side‐chain functionalized cyclopentadienes. In compound (II), there are two crystallographically independent molecules of very similar geometries connected by a noncrystallographic pseudosymmetry operation akin to a 21 screw axis. All Ti‐ligating N atoms in both (I) and (II) are in planar environments, which is indicative of an additional N→Ti pπ–dπ donation. This fact and the 18ē nature of both (I) and (II) are additionally supported by quantum chemical single‐point density functional theory (DFT) computations.  相似文献   

12.
Higher homologues of widely reported C86 isoprenoid diglycerol tetraether lipid cores, containing 0–6 cyclopentyl rings, have been identified in (hyper)thermophilic archaea, representing up to 21% of total tetraether lipids in the cells. Liquid chromatography‐tandem mass spectrometry confirms that the additional carbon atoms in the C87‐88 homologues are located in the etherified chains. Structures identified include dialkyl and monoalkyl (‘H‐shaped’) tetraethers containing C40‐42 or C81‐82 hydrocarbons, respectively, many representing novel compounds. Gas chromatography‐mass spectrometric analysis of hydrocarbons released from the lipid cores by ether cleavage suggests that the C40 chains are biphytanes and the C41 chains 13‐methylbiphytanes. Multiple isomers, having different chain combinations, were recognised among the dialkyl lipids. Methylated tetraethers are produced by Methanothermobacter thermautotrophicus in varying proportions depending on growth conditions, suggesting that methylation may be an adaptive mechanism to regulate cellular function. The detection of methylated lipids in Pyrobaculum sp. AQ1.S2 and Sulfolobus acidocaldarius represents the first reported occurrences in Crenarchaeota. Soils and aquatic sediments from geographically distinct mesotemperate environments that were screened for homologues contained monomethylated tetraethers, with di‐ and trimethylated structures being detected occasionally. The structural diversity and range of occurrences of the C87‐89 tetraethers highlight their potential as complementary biomarkers for archaea in natural environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Kaempferol 3‐Oβ‐glucopyranoside, kaempferol 3‐Oβ‐galactopyranoside and higher glycosides of these two flavonoids with α‐rhamnose at C‐2 and/or C‐6 of the primary sugar were studied by negative ion electrospray ionisation and serial mass spectrometry in a three‐dimensional (3D) ion trap mass spectrometer. Kaempferol 3‐Oβ‐glucopyranoside and kaempferol 3‐Oα‐rhamnopyranosyl(1→6)‐β‐glucopyranoside could be distinguished from their respective galactose analogues by differences in the ratio of the radical aglycone ion [Y0 – H]?? to the rearrangement aglycone ion Y following MS/MS of the deprotonated molecules. Kaempferol 3‐O‐rhamnopyranosyl(1→2)‐β‐glucopyranoside and kaempferol 3‐Oα‐rhamnopyranosyl(1→2)[α‐rhamnopyranosyl(1→6)]‐β‐glucopyranoside could be distinguished from their respective galactose analogues by differences in the product ion spectra of the [(M – H) – rhamnose]? ion following serial mass spectrometry. In the triglycoside, it was deduced that this ion resulted from the loss of the rhamnose substituted at 2‐OH of the primary sugar by observing that MS/MS of deprotonated kaempferol 3‐Oβ‐glucopyranosyl(1→2)[α‐rhamnopyranosyl(1→6)]‐β‐glucopyranoside showed the loss of glucose and not rhamnose. Thus the class of sugar (hexose, deoxyhexose, pentose) at C‐2 and C‐6 of the primary sugar can be determined. These observations aid the assignment of kaempferol 3‐O‐glycosides, having glucose or galactose as the primary glycosidic sugar, in LC/MS analyses of plant extracts, and this can be done with reference to only a few standards. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In the title compound, 4‐amino‐2‐(2‐O‐methyl‐β‐d ‐ribofuranos­yl)‐2H‐pyrazolo[3,4‐d]pyrimidine monohydrate, C11H15N5O4·H2O, the conformation of the N‐glycosylic bond is syn [χ = 20.1 (2)°]. The ribofuran­ose moiety shows a C3′‐endo (3T2) sugar puckering (N‐type sugar), and the conformation at the exocyclic C4′—C5′ bond is −ap (trans). The nucleobases are stacked head‐to‐head. The three‐dimensional packing of the crystal structure is stabilized by hydrogen bonds between the 2′‐O‐methyl­ribonucleosides and the solvent mol­ecules.  相似文献   

15.
Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the δ values of these reference materials should bracket the isotopic range of samples with unknown δ values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW‐SLAP) and carbonates (NBS 19 and L‐SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA‐IRMS). At present only L‐glutamic acids USGS40 and USGS41 satisfy these requirements for δ13C and δ15N, with the limitation that L‐glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on‐line (i.e. continuous flow) hydrogen reductive gas chromatography‐isotope ratio mass‐spectrometry (GC‐IRMS), (ii) five nicotines for oxidative C, N gas chromatography‐combustion‐isotope ratio mass‐spectrometry (GC‐C‐IRMS, or GC‐IRMS), and (iii) also three acetanilide and three urea reference materials for on‐line oxidative EA‐IRMS for C and N. Isotopic off‐line calibration against international stable isotope measurement standards at Indiana University adhered to the ‘principle of identical treatment’. The new reference materials cover the following isotopic ranges: δ2Hnicotine ?162 to ?45‰, δ13Cnicotine ?30.05 to +7.72‰, δ15Nnicotine ?6.03 to +33.62‰; δ15Nacetanilide +1.18 to +40.57‰; δ13Curea ?34.13 to +11.71‰, δ15Nurea +0.26 to +40.61‰ (recommended δ values refer to calibration with NBS 19, L‐SVEC, IAEA‐N‐1, and IAEA‐N‐2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC‐IRMS that are available with different δ15N values. Comparative δ13C and δ15N on‐line EA‐IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA‐IRMS reference materials. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

16.
Matrix assisted laser desorption ionization (MALDI) is a technique widely employed in the analysis of proteins and peptides, and nowadays it has also been applied to small molecules. There is little significant information regarding the in‐source dissociation processes on MALDI for natural products. Twenty‐six flavonoids (flavanones, flavones and flavonols) were analyzed by MALDI using different methods (with different matrices) and without matrix to comprehend the in‐source reactions and establish good analysis methods for these compounds. Depending on the class, structure and the laser intensity applied, methoxylated flavonoid aglycones can eliminate methyl radicals (˙CH3) in the source, such as flavonols, but lithium 2,4‐dihydroxybenzoate matrix suppresses the ˙CH3 eliminations and retro‐Diels–Alder cleavages in the source. All of the flavonoid O‐glycosides evaluated herein eliminated the sugar in source, even in the presence of the matrix, and its product radical ions ([M‐H‐sugar]?˙) were observed in the negative mode. The flavone C‐glycosides suffered intense dissociation, which was reduced by the addition of a matrix and the application of low laser intensity, mainly in the negative mode. Depending on the hydroxyl substituents, the [M‐H‐H]?˙ ion was observed with variable relative intensity in the spectra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The synthesis of several Ntert‐butoxycarbonyl(Boc)‐protected‐N‐substituted hydrazines has been accomplished. The use of these protected hydrazines in SNAr substitutions leads to products in which the most nucleophilic nitrogen displaces the leaving group. Treatment of these compounds with trifluoroacetic acid readily removes the Boc‐protecting group and the intermediates readily undergo cyclizations to yield N‐1‐substituted aza‐benzothiopyranoindazoles, anthrapyrazoles and aza‐anthrapyrazoles. Side chain buildup was employed in the synthesis of several aza‐anthrapyrazoles.  相似文献   

18.
In the title compound, 4‐amino‐3‐propynyl‐1‐(β‐d ‐ribofur­anosyl)‐1H‐pyrazolo[3,4‐d]pyrimidine methanol solvate, C13H15N5O4·CH3OH, the torsion angle of the N‐glycosylic bond is between anti and high‐anti [χ = −101.8 (5)°]. The ribofuranose moiety adopts the C3′‐endo (3T2) sugar conformation (N‐type) and the conformation at the exocyclic C—C bond is +sc (gauche, gauche). The propynyl group is out of the plane of the nucleobase and is bent. The compound forms a three‐dimensional network which is stabilized by several hydrogen bonds (O—H·O and O—H·N). The nucleobases are stacked head‐to‐tail. The methanol solvent mol­ecule forms hydrogen bonds with both the nucleobase and the sugar moiety.  相似文献   

19.
The structure of the title compound, {(C5H5ClN)2[Hg3Cl8]}n, consists of 4‐chloropyridinium cations and one‐dimensional [Hg3Cl8]2− anion chains. There are two coordination environments for HgII in the inorganic chain. The first is a distorted tetrahedral geometry made up of an HgCl2 unit with two Cl anion bridges, while the second is an octahedral coordination geometry consisting of an HgCl2 unit and four chloride‐anion bridges. This gives rise to a novel three‐layer centrosymmetric polymer. Finally, the three‐dimensional network comes about through the many C—H...Cl and N—H...Cl hydrogen bonds that link the organic and inorganic layers.  相似文献   

20.
Four novel Au‐ and Ag‐loaded MnO2 nanostructures supported on nitrogen‐doped pyroprotein of natural silk (Au–MnO2@PPNS and Ag–MnO2@PPNS) and nitrogen–sulfur‐doped pyroprotein of natural wool (Au–MnO2@PPNW and Ag–MnO2@PPNW) have been synthesized. Nitrogen‐ and nitrogen–sulfur‐doped pyroproteins were prepared by carbonization of natural silk and wool proteins, respectively. The catalysts were investigated for the aerobic oxidation of aromatic hydrocarbons of petroleum naphtha and the aerobic oxidative synthesis of 2‐phenylbenzo[d ]thiazoles, 2‐phenyl‐1H ‐benzo[d ]imidazoles and 2‐phenyl‐4‐quinazolinones in the absence of any co‐promoter and additional oxidizing reagent. The prepared catalytic systems showed higher catalytic activity in comparison to aggregated catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号