首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An optimized microwave‐assisted extraction (MAE) method and an efficient HPLC analysis method were developed for fast extraction and simultaneous determination of oleanolic acid and ursolic acid in the fruit of Chaenomeles sinensis. The open vessel MAE process was optimized by using a central composite experimental design. The optimal conditions identified were microwave power 600 W, temperature 52°C, solvent to material ratio 32 mL/g and extraction time 7 min. The results showed that MAE is a more rapid extraction method with higher yield and lower solvent consumption. The HPLC–photodiode array detection analysis method was validated to have good linearity, precision, reproduction and accuracy. Compared with conventional extraction and analysis methods, MAE–HPLC–photodiode array detection is a faster, convenient and appropriate method for determination of oleanolic acid and ursolic acid in the fruits of C. sinensis.  相似文献   

2.
An optimized microwave‐assisted extraction (MAE) method and RP‐HPLC method were developed for the simultaneous extraction and determination of rutin, forsythiaside A, and phillyrin in the fruits of Forsythia suspensa. The key parameters of the open‐vessel MAE process were optimized. A mixed solvent of methanol and water (70:30, v/v) was most suitable for the simultaneous extraction of the three components. The sample was soaked for 10 min before extraction. The optimized conditions were: microwave power 400 W, temperature 70°C, solvent‐to‐material ratio 30 mL/g, and extraction time 1 min. Compared to conventional extraction methods, the proposed method can simultaneously extract the three components in high yields and was proved to be a more rapid method with a lower solvent consumption. The optimized HPLC–photodiode array detection analysis was validated to have good linearity, precision, accuracy, and sensitivity. The developed MAE followed by RP‐HPLC is a fast and appropriate method for the simultaneous extraction and determination of rutin, forsythiaside A, and phillyrin in the fruits of F. suspensa.  相似文献   

3.
A rapid method combining microwave‐assisted extraction (MAE) and high‐speed counter‐current chromatography (HSCCC) was applied for preparative separation of six bioactive compounds including loganic acid ( I ), isoorientin‐4′‐O‐glucoside ( II ), 6′‐O‐β‐d ‐glucopyranosyl gentiopicroside ( III ), swertiamarin ( IV ), gentiopicroside ( V ), sweroside ( VI ) from traditional Tibetan medicine Gentiana crassicaulis Duthie ex Burk. MAE parameters were predicted by central composite design response surface methodology. That is, 5.0 g dried roots of G. crassicaulis were extracted with 50 mL 57.5% aqueous ethanol under 630 W for 3.39 min. The extract (gentian total glycosides) was separated by HSCCC with n‐butanol/ethyl acetate/methanol/1% acetic acid water (7.5:0.5:0.5:3.5, v/v/v/v) using upper phase mobile in tail‐to‐head elution mode. 16.3, 8.8, 12., 25.1, 40.7, and 21.8 mg of compounds I–VI were obtained with high purities in one run from 500 mg of original sample. The purities and identities of separated components were confirmed using HPLC with photo diode array detection and quadrupole TOF‐MS and NMR spectroscopy. The study reveals that response surface methodology is convenient and highly predictive for optimizing extraction process, MAE coupled with HSCCC could be an expeditious method for extraction and separation of phytochemicals from ethnomedicine.  相似文献   

4.
A method based on microwave‐assisted extraction (MAE) has been developed for the determination of paclitaxel and five related taxoids, namely 10‐deacetylbaccatin III (10‐DAB III), cephalomannine, 10‐deacetylpaclitaxel (10‐DAT), 7‐xyl‐10‐ deacetylpaclitaxel (7‐xyl‐10‐DAT), and 7‐epi‐10‐deacetylpaclitaxel (7‐epi‐10‐DAT) in Taxus species in this study. The influential parameters of the MAE procedure were optimized, and the optimal conditions were as follows: extraction solvent 80% ethanol solution, solid/liquid ratio 1:10 (g/mL), temperature 50°C, and three extraction cycles, each cycle 10 min. The method validation for LC‐MS/MS analysis was performed. The LOD and LOQ were 3.16–9.20 and 12.20–30.45 ng/mL, respectively. Repeatability and reproducibility for the six taxiods with RSD ranged from 2.78 to 3.85% and from 5.26 to 6.60%. The recoveries of the method for the six taxoids were 92.6–105.6%. The developed MAE‐LC‐MS/MS method was also successfully applied to determine the contents of six taxoids in different Taxus species.  相似文献   

5.
A microwave‐assisted extraction (MAE) protocol and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of bisphenol F diglycidyl ether (Novolac glycidyl ether 2‐Ring), Novolac glycidyl ether 3‐Ring, Novolac glycidyl ether 4‐Ring, Novolac glycidyl ether 5‐Ring, Novolac glycidyl ether 6‐Ring, bisphenol A diglycidyl ether, bisphenol A (2,3‐dihydroxypropyl) glycidyl ether, bisphenol A (3‐chloro‐2‐hydroxypropyl) glycidyl ether, bisphenol A bis(3‐chloro‐2‐hydroxypropyl) ether, bisphenol A (3‐chloro‐2‐hydroxypropyl) (2,3‐dihydroxypropyl) ether in canned fish and meat. After being optimized in terms of solvents, microwave power and irradiation time, MAE was selected to carry out the extraction of ten target compounds. Analytes were purified by poly(styrene‐co‐divinylbenzene) SPE columns and determinated by HPLC‐fluorescence detection. LOD varied from 0.79 to 3.77 ng/g for different target compounds based on S/N=3; LOQ were from 2.75 to 10.92 ng/g; the RSD for repeatability were <8.64%. The analytical recoveries ranged from 70.46 to 103.44%. This proposed method was successfully applied to 16 canned fish and meat, and the results acquired were in good accordance with the studies reported. Compared with the conventional liquid–liquid extraction and ultrasonic extraction, the optimized MAE approach gained the higher extraction efficiency (20–50% improved).  相似文献   

6.
A novel and reliable method based on microwave‐assisted extraction (MAE) followed by HPLC‐UV was developed and validated for the simultaneous quantification of six pharmacologically important oxoisoaporphine alkaloids in the total plants of Menispermum dauricum DC. The optimal MAE extraction condition was performed at 60°C for 11 min with ethanol–water (70:30, v/v) as the extracting solvent, and the solvent to solid ratio was 20:1. Chromatographic separation was achieved on a reversed‐phase YMC C18 column (250 × 4.6 mm, i.d., 5 µm) with a gradient mobile phase consisting of A (1% aqueous formic acid) and B (acetonitrile containing 1% formic acid) at a flow rate of 1.5 mL/min. The detection wavelength was set at 422 nm. Excellent linearity over the investigated concentration ranges was observed with values of r >0.999 for all analytes. The method developed was validated with acceptable sensitivity, intra‐ and inter‐day precision and extraction recoveries. It was successfully applied to the determination of six alkaloids in Menispermum dauricum DC from different sources and different parts of Menispermum dauricum DC. The results obtained indicated that the method is suitable for the quality control of Menispermum dauricum DC. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this research, a novel homogeneous liquid‐phase microextraction method was successfully developed based on applying octanoic acid as low‐density extraction solvent. The method was applied for extraction and determination of chlorophenols (CPs) as model compounds. Twelve milliliter of the sample solution was poured into a home‐designed glass vial. Sixty microliter of octanoic acid was solved in water sample by adjusting pH and ionic strength. By rapid addition of 75 μL of concentrated HCl (6 M), a cloudy solution was obtained. Phase separation occurred at 5000 rpm for 5 min. After that, 20 μL of the collected phase (approximately 26 μL) was injected into the HPLC‐UV instrument for analysis. The effect of some parameters such as the volume of concentrated HCl (phase separation reagent), ionic strength, extraction time, centrifugation time, and the volume of extracting phase on the extraction efficiency of the CPs were investigated and optimized. The preconcentration factors in a range of 159–218 were obtained under the optimal conditions. The linear range, detection limits (S/N = 3), and precision (n = 3) were 1– 200, 0.3–0.5 μg/L, and 4.6–5.1%, respectively. Tap water, seawater, and river water samples were successfully analyzed for the existence of CPs using the proposed method and satisfactory results were obtained.  相似文献   

8.
《Electrophoresis》2018,39(17):2218-2227
A rapid, simple, and efficient sample extraction method based on micro‐matrix‐solid‐phase dispersion (micro‐MSPD) was applied to the extraction of polyphenols from pomegranate peel. Five target analytes were determined by ultra‐HPLC coupled with Q‐TOF/MS. Carbon molecular sieve (CMS) was firstly used as dispersant to improve extraction efficiency in micro‐MSPD. The major micro‐MSPD parameters, such as type of dispersant, amount of dispersant, grinding time, and the type and the volume of elution solvents, were studied and optimized. Under optimized conditions, 26 mg of pomegranate peel was dispersed with 32.5 mg of CMS, the grinding time was selected as 90 s, the dispersed sample was eluted with 100 μL of methanol. Results showed that the proposed method was of good linearity for concentrations of analytes against their peak areas (coefficient of determination r2 > 0.990), the LOD was as low as 3.2 ng/mL, and the spiking recoveries were between 88.1 and 106%. Satisfactory results were obtained for the extraction of gallic acid, punicalagin A, punicalagin B, catechin, and ellagic acid from pomegranate peel sample, which demonstrated nice reliability and high sensitivity of this approach.  相似文献   

9.
Rapid, simple and reliable HPLC/UV and LC‐ESI‐MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C30 column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC‐ESI‐MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC‐ESI‐MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC‐ESI‐MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC‐ESI‐MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, for the first time, microwave‐assisted extraction (MAE) followed by CE was developed for the fast analysis of catechin and epicatechin in green tea. In the proposed method, catechin and epicatechin in green tea samples were rapidly extracted by MAE technique, and then analyzed by CE. The MAE conditions and the method's validation were studied. It is found that the extraction time of 1 min with 400 W microwave irradiation is enough to completely extract catechin and epicatechin in green tea sample, whereas the conventional ultrasonic extraction (USE) technique needs long extraction time of 60 min. The method validations were also studied in this work. The calibration curve shows good linearity in 0.01–3 mg/mL for catechin (R2=0.993), and 0.005–3 mg/mL for epicatechin (R2=0.996), respectively. The RSD values for catechin and epicatechin are 0.65 and 2.58%, respectively. This shows that the proposed method has good reproducibility. The proposed method has good recoveries, which are 118% for catechin and 120% for epicatechin. The proposed method was successfully applied to determination of the catechin and epicatechin in different green tea samples. The experiment results have demonstrated that the MAE following CE is a simple, fast and reliable method for the determination of catechin and epicatechin in green tea.  相似文献   

11.
In this study, we successfully studied water‐soluble extract from Radix isatidis. Optimized conditions of MAE were listed, the sample can be extracted completely in 10 minutes under microwave power of 400W and solid/liquid ratio of 1:80. Active compounds in water‐soluble extract from R. isatidis were identified with HPLC‐DAD/ESI‐MS, these compounds followed by cytidine, uridine, guanosine, (R,S)‐goitrin and adenosine. RODWs–HPLC as a new sensitive chromatography were also first proposed and investigated, we favoringly used this method for simultaneous determination of these active constitutents in water‐soluble R. isatidis extract. Chromatographic separation was performed on a Diamonsil C18 column (5 μm, 150 mm × 4.6 mm) with a mobile phase gradient consisting of methanol and water at a flow‐rate of 1.0 mL/min, detection wavelengths 240, 250, 260 and 270 nm, the retention times of the tested five compounds were about 4.2, 5.8, 11.1, 14.2 and 20.8 min respectively, the limits of detection were 15, 12, 20, 5.8 and 24 ng/mL for cytidine, uridine, guanosine, (R,S)‐goitrin and adenosine respectively, their linear ranges were between 0.045 and 350 μg/mL with correlation coefficient (R) of 0.9998‐0.9999. The relative standard deviations (RSDs) of intra‐day and inter‐day assays were 0.30‐2.36% and 0.86‐2.54% respectively. Extraction recoveries were 94.25‐106.21%. This novel analytical method was shown to be simple, low‐cost, sensitive and reliable for multiple components in complex or undeveloped materials via MAE, ESI‐MS and RODWs‐HPLC.  相似文献   

12.
In this study, a simultaneous determination method for nitrogen‐containing polycyclic aromatic hydrocarbons including 7‐methylquinoline, acridine, 5,6‐benzoquinoline, carbazole, and 9‐methylcarbazole was developed. This method is based on a micro‐solid phase extraction using TiO2 nanotube arrays as an adsorbent in combination with HPLC. Some factors that had an effect on the enrichment were optimized, such as sample pH, surfactant concentration, ion strength, type of eluent, equilibrium time, and desorption time. Under the optimized conditions, the linear ranges and LODs were in the range of 0.01–100 and 0.0035–0.81 μg/L, respectively. The precisions of the proposed method were <9.51% (RSD, n = 6). The developed method was validated with four real samples, and the spiked recoveries were in the range of 77–109.6%. All these results demonstrated that this novel micro‐solid‐phase extraction technique was a reliable alternative to conventional preconcentration method for the extraction and analysis of such nitrogen‐containing polycyclic aromatic hydrocarbons in complex samples.  相似文献   

13.
This paper reports the application of a multiphase dispersive extraction method to the extraction, separation, and determination of the phenolic acids from Salicornia herbacea L. using silica‐confined ionic liquids as sorbents. A suitable sorbent for phenolic acid extraction and separation was first identified based on the adsorption behavior of the phenolic acids on different silica‐confined ionic liquids. The sample was then mixed with the optimized sorbent and solvent to achieve multiphase dispersive extraction. The sample/sorbent ratio was optimized using theoretical calculations from the adsorption isotherm and experiments. After transferring the supernatant to an empty cartridge, an SPE process was used to separate the three phenolic acids from the other interference. Through systematic optimization, the optimal conditions produced high recovery rates of protocatechuic acid (91.20%), caffeic acid (94.03%), and ferulic acid (91.33%). Overall, the proposed method is expected to have wide applicability.  相似文献   

14.
《中国化学会会志》2018,65(8):989-994
In this study, an electromembrane extraction (EME) method combined with a simple HPLC‐UV analysis was developed and validated for the determination of valproic acid in human plasma samples. The major parameters influencing EME procedure, namely the solvent composition, voltage, pH of acceptor and donor solutions, salt effect, and time of extraction, were evaluated and optimized. The drug was extracted from the donor aqueous sample solution (pH 5) to the acceptor aqueous solution (pH 13). The donor and acceptor phases were separated by a hollow fiber dipped in 1‐octanol as a supported liquid membrane. A voltage of 60 V during 25 min was applied as the driving force. The drug concentration enrichment factor obtained was >125, which enhanced the sensitivity of the method. The limit of detection and the limit of quantitation were 0.2 and 0.5 μg/mL, respectively. The proposed method was successfully applied to a human plasma sample, with a relative recovery of 75%. The method was linear over the range 0.5–10 μg/mL for valproic acid (R2 > 0.9996) with a repeatability (%RSD) between 0.9 and 3.3% (n = 3). Valproic acid is an anticonvulsant drug with poor UV absorption, and EME can improve the sensitivity of HPLC‐UV for the determination of valproic acid in plasma samples.  相似文献   

15.
In the current study, a novel technique for extraction and determination of trans,trans‐muconic acid, hippuric acid, and mandelic acid was developed by means of ion‐pair‐based hollow fiber liquid‐phase microextraction in the three‐phase mode. Important factors affecting the extraction efficiency of the method were investigated and optimized. These metabolites were extracted from 10 mL of the source phase into a supported liquid membrane containing 1‐octanol and 10% w/v of Aliquat 336 as the ionic carrier followed by high‐performance liquid chromatography analysis. The organic phase immobilized in the pores of a hollow fiber was back‐extracted into 24 μL of a solution containing 3.0 mol/L sodium chloride placed inside the lumen of the fiber. A very high preconcentration of 212‐ to 440‐fold, limit of detection of 0.1–7 μg/L, and relative recovery of 87–95% were obtained under the optimized conditions of this method. The relative standard deviation values for within‐day and between‐day precisions were calculated at 2.9–8.5 and 4.3–11.2%, respectively. The method was successfully applied to urine samples from volunteers at different work environments. The results demonstrated that the method can be used as a sensitive and effective technique for the determination of the metabolites in urine.  相似文献   

16.
Extraction and pre‐concentration of a bioactive marker compound, phenyl‐1,3,5‐heptatriyne from Bidens pilosa, prior to HPLC has been demonstrated using both organic and ecofriendly solvents. Non‐ionic surfactants, viz. Triton X‐100, Triton X‐114 and Genapol X‐80, were used for extraction. No back‐extraction or liquid chromatographic steps were required to remove the target phytochemical from the surfactant‐rich extractant phase. The optimized cloud point extraction procedure has been shown to be a potentially useful methodology for the preconcentration of the target analyte, with a preconcentration factor of 4–99. Moreover, the method is simple, sensitive, rapid and consumes lesser solvent than traditional methods. An isocratic chromatographic separation and quantitation was accomplished on a C18 column with acetonitrile–acidified aqueous as mobile phase at a flow rate of 1.0 mL/min, UV detection at 254 nm and specificity with photo diode‐array detector (PDA) and MS. Under the optimum experimental conditions recovery was satisfactory (99.18–100.33%) without interference from the surfactant. The method seems to be reliable with intraday precision and interday precision below 2.0%. Good linearity was obtained in the working range from 7.5 to 30 µg/mL with correlation coefficient >0.99. The limits of detection and quantitation were 1.84 and 6.13 µg/mL, respectively. The method was validated following international guidelines and successfully applied for quantitative assays of cytotoxic compound phenyl‐1,3,5‐heptatriyne in Bidens pilosa. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A new silver‐functionalized silica‐based material with a core–shell structure based on silver nanoparticle‐coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l‐ cysteine. l‐ Cysteine‐silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid‐phase extraction method based on l‐ cysteine‐silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l‐ cysteine‐silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R2 > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85–102%) with relative standard deviations below 5.2% (= 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples.  相似文献   

18.
An approach that combined green‐solvent methods of extraction with chromatographic chemical fingerprint and pattern recognition tools such as principal component analysis (PCA) was used to evaluate the quality of medicinal plants. Pressurized hot water extraction (PHWE) and microwave‐assisted extraction (MAE) were used and their extraction efficiencies to extract two bioactive compounds, namely stevioside (SV) and rebaudioside A (RA), from Stevia rebaudiana Bertoni (SB) under different cultivation conditions were compared. The proposed methods showed that SV and RA could be extracted from SB using pure water under optimized conditions. The extraction efficiency of the methods was observed to be higher or comparable to heating under reflux with water. The method precision (RSD, n = 6) was found to vary from 1.91 to 2.86% for the two different methods on different days. Compared to PHWE, MAE has higher extraction efficiency with shorter extraction time. MAE was also found to extract more chemical constituents and provide distinctive chemical fingerprints for quality control purposes. Thus, a combination of MAE with chromatographic chemical fingerprints and PCA provided a simple and rapid approach for the comparison and classification of medicinal plants from different growth conditions. Hence, the current work highlighted the importance of extraction method in chemical fingerprinting for the classification of medicinal plants from different cultivation conditions with the aid of pattern recognition tools used.  相似文献   

19.
A SBA‐15/polyaniline para‐toluenesulfonic acid nanocomposite supported micro‐solid‐phase extraction procedure has been developed for the extraction of parabens (methylparaben, ethylparaben, and propylparaben) from wastewater and cosmetic products. The variables of interest in the extraction process were pH of sample, sample and eluent volumes, sorbent amount, salting‐out effect, extraction and desorption time, and stirring rate. A Plackett–Burman design was performed for the screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design. The optimum experimental conditions found at 50 mL sample solution, extraction and desorption times of 40 and 20 min, respectively, 500 μL of 3% v/v acetic acid in methanol as eluent, 0.01 M salt addition, and 10 mg of the sorbent. Under the optimum conditions, the developed method provided detection limits in the range of 0.08–0.4 ng/mL with good repeatability (RSD% < 7) and linearity (r2 = 0.997–0.999) for the three parabens. Finally, this fast and efficient method was employed for the determination of target analytes in cosmetic products and wastewater, and satisfactory results were obtained.  相似文献   

20.
A novel dispersive liquid‐liquid microextraction that combines self‐induced acid‐base effervescent reaction and manual shaking, coupled with ultra high performance liquid chromatography with tandem mass spectrometry was developed for simultaneous determination of ten neonicotinoid insecticides and metabolites in orange juice. An innovative aspect of this method was the utilization of the acidity of the juice for a self‐reaction between acidic components contained in the juice sample and added sodium carbonate which generated carbon dioxide bubbles in situ, accelerating the analytes transfer to the extractant of 1‐undecanol. The total acid content of juice sample was measured to produce the maximum amount of bubbles with minimum usage of carbonate. Manual shaking was subsequently adopted and was proven to enhance the extraction efficiency. The factors affecting the performance, including the type and the amount of the carbon dioxide source and extractant, and ionic strength were optimized. Compared with conventional methods, this approach exhibited low limits of detection (0.001–0.1 µg/L), good recoveries (86.2–103.6%), high enrichment factors (25–50), and negligible matrix effects (?12.3–13.7%). The proposed method was demonstrated to provide a rapid, practical, and environmentally friendly procedure due to no acid reagent, toxic solvent, or external energy requirement, giving rise to potential application on other high acid‐content matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号