首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microemulsion EKC (MEEKC) was used for the determination of ketorolac and its three impurities. The microemulsion system was optimized, for the first time in the literature, using a multivariate strategy involving a mixture design. A 13-run experimental plan covering an experimental domain defined by the components aqueous phase (10 mM borate buffer pH 9.2), oil phase (n-heptane) and surfactant/cosurfactant (SDS/n-butanol) was carried out. Good results were obtained with all microemulsions tested considering as responses analysis time and resolution, and according to the desirability function the best microemulsion system was constituted by 90.0% 10 mM borate buffer, 2.0% n-heptane, 8.0% of SDS/n-butanol in 1:2 ratio. Finally, with the aim of reducing analysis time, a response surface study was carried out in the experimental domain defined by the process variables temperature and voltage and the best values were 17 degrees C and -17 kV, respectively. Applying the optimised conditions, a complete resolution among the analytes was obtained in about 3 min using the short-end injection method. The method was validated for both drug substances and drug product and was applied to the quality control of ketorolac in coated tablets. A comparison of MEEKC, MEKC and CEC for assaying ketorolac and its related substances has been made.  相似文献   

2.
A cyclodextrin-modified micellar electrokinetic chromatographic (CD-MEKC) method for the determination of the most important potential impurities of methotrexate (MTX): 2,4-diamino-6-(hydroxymethyl)pteridine, aminopterine hydrate, 4-[N-(2-amino-4-hydroxy-6-pteridinylmethyl)-N-methylamino] benzoic acid, 4-[N-(2,4-diamino-6-pteridinylmethyl)-N-methylamino] benzoic acid, and the distomer D-MTX is presented. The MEKC separation of these compounds was optimized by applying a step-by-step approach. The addition of beta-CD to a conventional MEKC system, based on sodium dodecyl sulfate (SDS) as surfactant, showed to be essential for the enantioresolution of racemic MTX as well as for the separation of the achiral impurities. To achieve high-resolution factor between the peaks adjacent to the main component (L-MTX), as required in the analysis of related impurities, the separation conditions were stressed; in particular, the addition of methanol to the CD-MEKC system resulted in a very effective choice. Under the optimized final conditions (100 mM SDS and 45 mM beta-CD in a mixture of 50 mM borate buffer, pH 9.30-methanol (75:25 v/v)), the method was validated showing a general adequate accuracy (93-106% recovery) in the determination of L-MTX related substances at the impurity level of 0.12% w/w with a relative standard deviation (RSD)% lower than 8% (n = 4). The method was successfully applied to the analysis of pharmaceuticals (tablets and injections) which showed to contain the distomer D-MTX as major impurity and aminopterine hydrate as a further related substance in the commercial tablets.  相似文献   

3.
Capillary electrochromatography (CEC) was employed for the assay of ketorolac (KT) and its known related impurities [1-hydroxy analog of ketorolac (HK), 1-keto analog of ketorolac (KK), ketorolac decarboxylated (DK)] in both drug substance and coated tablets. Detection was made at 323 nm and flufenamic acid was selected as internal standard. The experiments were performed in a 100 microm i.d. capillary packed with RP-18 silica particles (33.0, 24.5, 23.0 cm total, effective and packed lengths, respectively). The composition of the mobile phase was optimised by changing pH of the buffer and acetonitrile (ACN) content and by addition of other organic modifiers (methanol, ethanol, isopropanol, n-propanol) in order to evaluate the effect of these factors on the method performance (efficiency, retention and resolution). The optimum mobile phase consisted of a mixture of 50 mM ammonium formate buffer pH 3.5-water-acetonitrile (10:20:70, v/v/v), while voltage and temperature were set at 30 kV and 20 degrees C, respectively. Applying these conditions, all peaks were baseline resolved and the analysis was performed in less than 9 min. Selectivity, repeatability of retention time and peak area, detection and quantitation limits, linearity and range, precision and accuracy were also investigated. R.S.D. and bias values obtained for all the analytes were below 5% and sensitivity was satisfactory, thus the method was deemed suitable for pharmaceutical quality control. Applying the method to coated tablets, a recovery of 98.5+/-0.8% and an R.S.D. of 0.5% were found.  相似文献   

4.
This paper describes packed column supercritical fluid chromatography (SFC) for the analysis of a peroxysome proliferator-activating gamma-receptor agonist that is a carboxylic acid. Evaluation of conditions for the separation of this candidate drug and related compounds in bulk substance is described. A Chiralcel OD column was used for this purpose due to its high selective retention of related substances and relative inertness, though the enantioselectivity was negligible, with methanol as polar modifier. A high enantioselectivity was obtained on Chiralpak AD and it was possible to determine the enantiomeric purity within 10 min on a 5 cm short column. Both the achiral and the chiral systems were run without acid additive in the mobile phase and the level of detection of impurities by area was about 0.1%. For the analysis of samples dissolved in water, without any isolation step, 2-propanol was used as modifier. Due to the column surface activity, evidently generated by injected water, citric acid 1 mM was included as additive in the 2-propanol in order to maintain symmetric and undistorted peak shape. The detection limit for the assay was 21 microg mL(-1) (50 nmol mL(-1)) for 5 microL injected (R.S.D. 6.4%, n = 8). A 5 cm short Chiralcel OD column was used. Determination of enantiomeric purity of the drug in aqueous samples required increased sensitivity. The sample was acidified and extracted into a small volume of 1-pentanol, out of which 25 microl was analyzed by SFC. The minor enantiomer at the 3% (w/w) level added could be confirmed. Its ratio remained constant during the procedure as measured relative to a reference solution in organic media.  相似文献   

5.
Rabeprazole sodium (Aciphex®) is a gastric proton pump inhibitor used for the prevention and treatment of gastric acid–related diseases. During the synthesis of bulk drug of rabeprazole sodium, we have observed metabolites rabeprazole sulfide and rabeprazole sulfone and related substances rabeprazole-N-oxide, rabeprazole sulfone-N-oxide, N-aralkyl rabeprazole, chloro rabeprazole, and methoxy rabeprazole as impurities in the drug substance. The present work describes the synthesis and characterization of these compounds.  相似文献   

6.
Ketorolac tromethamine is a potent nonsteroidal anti-inflammatory drug that is widely used in the treatment of moderate to severe pain. A new method was developed and validated for quantifying ketorolac (the free acid of the tromethamine salt) in human plasma by high-performance thin-layer chromatography. The stationary phase was silica gel 60, and the composition of the mobile phase was n-butanol-chloroform-acetic acid-ammonium hydroxide-water (9 + 3 + 5 + 1 + 2, v/v). The densitometric analysis of ketorolac was performed at 323 nm. The method was validated for precision (repeatability and reproducibility), accuracy, and sensitivity. Repeatability was 10.11% [coefficient of variation (CV)] and reproducibility was 12.18% (CV) as the maximum variation. Accuracy was determined at 3 different concentration levels, and results were within +/-15% of the predetermined range. Data were fitted by a linear mathematical function (linear regression). The calibration graph was linear in the range of 200-2000 ng/mL. Average recovery was 73.67%. The method proved to be accurate, precise, and sensitive for the ketorolac tromethamine quantification.  相似文献   

7.
A CD‐modified microemulsion electrokinetic chromatography method has been developed and validated for dexamphetamine sulfate which allows the simultaneous determination of charged and uncharged impurities of the drug including the levorotary (R)‐enantiomer. The optimized background electrolyte consisted of 1.5% w/w SDS, 0.5% w/w ethyl acetate, 3.5% w/w 1‐butanol, 2.5% w/w 2‐propanol and 92% w/w 50 mM sodium phosphate buffer, pH 3.0, containing 5.5% w/w sulfated β‐CD. Separations were performed in a 50.2/40 cm, 50 μm id fused silica capillary at a temperature of 20°C and an applied voltage of ?14 kV. Carbamazepine was used as internal standard. The assay was validated in the range of 0.1–1.0% for the related substances and 0.1–5.0% for levoamphetamine based on a concentration of 3 mg/mL of dexamphetamine sulfate. The LOD of all analytes ranged between 0.05 and 0.2%. In commercial samples of dexamphetamine sulfate, levoamphetamine was found at concentrations between 3.2 and 3.8%, whereas none of the other impurities could be detected.  相似文献   

8.
A micellar electrokinetic chromatographic (MEKC) method was developed for the quantification of mesalazine or 5-aminosalicylic acid (5-ASA) and its major impurities 3-aminosalicylic acid, salicylic acid, sulfanilic acid and 4-aminophenol. The optimisation of the experimental conditions was carried out considering some important requirements: resolution, reproducibility, detection limits of 0.1% (m/m) or less, short total analysis time. Preliminary investigations employing sodium dodecyl sulfate (SDS) as surfactant did not lead to the necessary resolution of the studied compounds; the addition of tetrabutylammonium bromide (TBAB) to the SDS micellar system resulted in the complete separation of all the compounds. The effects on the separation by several parameters such as TBAB concentration, SDS concentration, background electrolyte pH and concentration, were evaluated. Using a fused-silica capillary (8.5 cm effective length) complete analysis was obtained in a very short time. Under the optimised final conditions [120 mM 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid buffer, pH 10.20, 65 mM SDS in the presence of 55 mM TBAB and 5% methanol] the method was validated for specificity, precision, linearity, limits of detection and quantitation, and robustness: the 5-ASA related impurities can be quantified at least at the 0.1% (m/m) level.  相似文献   

9.
A capillary electrophoresis method using CDs for quality control of esomeprazole (ESO) in terms of enantiomeric purity and related substances in raw material and pellets was developed. ESO is the S‐enantiomer of omeprazole (OMZ). Several parameters were evaluated, including type and concentration of buffer and CD, concentration of additives and electrolyte pH. Resolution between the enantiomers of OMZ obtained for each parameter tested was calculated and the presence of the main related substance such as OMZ sulfone was carefully monitored. The optimized system consisted of 100 mM Tris‐phosphate buffer pH 2.5 with 20 mM 2‐hydroxypropyl‐β‐CD, 1 mM sodium dithionite, temperature at 15°C, voltage at 28 kV, and UV detection at 301 nm. Once optimized, the electrophoretic system was validated according to ICH guidelines. The limits of detection and quantification for R‐OMZ were 0.6 μg/mL (0.06% w/w of ESO) and 2.0 μg/mL (0.2% w/w of ESO), respectively. A mean concentration of R‐OMZ <0.2% limit established by the United States Pharmacopeia (USP) was found in the raw material and six‐pellet samples of ESO. No other impurities were found in the samples under these conditions. Therefore, the developed method was found to be appropriate not only for enantiomeric quality control of ESO but also for the analysis of ESO and the main related substance in raw material and pharmaceutical formulations as well as for stability indicating studies.  相似文献   

10.
An MEKC method for the analysis of goserelin and related substances has been developed using a combination of additives including CTAB, β‐CD, and sodium hexanesulfonate. For this assay, the running buffer (pH and additives) and separation conditions (voltage and temperature) were optimized. The optimized system was the following: 200 mM 6‐aminocaproic acid buffer (pH 4.2) supplemented with 175 mM CTAB, 3.0% w/v β‐CD, and 20 mM sodium hexanesulfonate; the voltage was 10 kV in reverse polarity mode, the temperature was 20°C, and UV detection was measured at 220 nm. The method was qualified by evaluating the specificity, precision, linearity, accuracy, LOD, and LOQ. According to validation experiments, the optimized method was specific, accurate, and repeatable and satisfied the requirements for the analysis of goserelin and related substances. Compared with the RP‐HPLC method, the MEKC method better solved the problem of overlapping impurity signals, and the migration time required was shorter. This method can be used for quality control and for the analysis of goserelin and its related substances.  相似文献   

11.
Ketorolac, a nonsteroidal anti‐inflammatory drug, was subjected to forced degradation studies as per International Conference on Harmonization guidelines. A simple, rapid, precise, and accurate high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (LC/ESI/Q/TOF/MS/MS) method has been developed for the identification and structural characterization of stressed degradation products of ketorolac. The drug was found to degrade in hydrolytic (acidic, basic, and neutral), photolytic (acidic, basic, and neutral solution), and thermal conditions, whereas the solid form of the drug was found to be stable under photolytic conditions. The method has shown adequate separation of ketorolac tromethamine and its degradation products on a Grace Smart C‐18 (250 mm × 4.6 mm i.d., 5 µm) column using 20 mM ammonium formate (pH = 3.2): acetonitrile as a mobile phase in gradient elution mode at a flow rate of 1.0 ml/min. A total of nine degradation products were identified and characterized by LC/ESI/MS/MS. The most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H]+ ions of ketorolac and its degradation products. In silico toxicity of the drug and degradation products was investigated by using topkat and derek softwares. The method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonization guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A novel and unique approach was used for retention modelling in the separation of simvastatin and six impurities by liquid chromatographic using a microemulsion as mobile phase. A microemulsion is a modification of a micellar system where a lipophilic organic solvent is dissolved in the micelles; for that reason, microemulsions are usually treated as solvent-modified micellar solutions. When microemulsions are used as eluents in HPLC separations, solutes partition between the charged oil droplets and the aqueous buffer phase. The complexity of the composition of the microemulsion permits extensive manipulations to be made during method development in order to achieve acceptable resolution of such a complex mixture of substances. In order to avoid a laborious "trial and error" procedure, a 2(3) full factorial design was applied for choosing an optimal microemulsion composition to obtain good separation in a reasonable run time. Organic solvent, sodium dodecyl sulphate, and n-butanol content were varied within defined experimental domain. Optimal conditions for the separation of simvastatin and its six impurities were obtained using an X Terra 50 x 4.6 mm, 3.5 microm particle size column at 30 degrees C. The mobile phase consisted of 0.9% w/w of diisopropyl ether, 2.2% w/w of sodium dodecylsulphate (SDS), 7.0% w/w of co-surfactant such as n-butanol, and 89.9% w/w of aqueous 25 mM disodium phosphate pH 7.0.  相似文献   

13.
The present study was aimed at developing safe and effective bioadhesive gelling systems of ketorolac tromethamine, a potent non-narcotic analgesic with moderate anti-inflammatory activity for nasal systemic delivery. Chitosan and pectin based gelling systems were prepared with variables like polymer concentration and type. These systems were characterized in terms of their physical properties, in vitro bioadhesion, in vitro drug release and long-term stability. The anti-inflammatory activity and mucosal irritancy of selected gels were also evaluated in rats and these results were compared with per oral, intraperitoneal and nasal solution administration of ketorolac tromethamine. All the prepared formulations gelled immediately at the nasal mucosal pH and showed longer contact time. Addition of hydroxypropyl methylcellulose (HPMC) in both chitosan and pectin based gelling systems increased the viscosity and gel strength. All the formulated gels exhibited pseudoplastic rheology and diffusion-controlled drug release. The results from stability studies revealed that the prepared thermogels showed marginal decrease in viscosity but at the same time, no significant difference in drug content, and in vitro release characteristics were observed before and after accelerated studies. The developed gelling systems produced only mild to negligible irritant effect to nasal mucosae as compared to control group.  相似文献   

14.
A dual system of CDs was used for the first time in MEEKC with the aim of determining clemastine and its three main related impurities in both drug substances and tablets. The addition of methyl-β-cyclodextrin and heptakis(2,6-di-O-methyl)-β-cyclodextrin to the microemulsion pseudo-stationary phase was essential to increase the resolving power of the system to obtain a baseline separation among the compounds. The best microemulsion composition was identified by mixture design and the effects of the factors concentrations of CDs and voltage were investigated by a response surface study applying a Central Composite Design. In both cases, Derringer's desirability function made it possible to find the global optimum, which corresponded to the following combination: microemulsion, 89.8% 10 mM borate buffer pH 9.2, 1.5% n-heptane and 8.7% of SDS/n-butanol in 1:2 ratio; 18 mM methyl-β-cyclodextrin, 38 mM heptakis(2,6-di-O-methyl)-β-cyclodextrin, 17 kV. By applying these conditions, the separation was completed in about 5.5 min. The method was validated following International Conference on Harmonisation guidelines and was applied to a real sample of clemastine tablets.  相似文献   

15.
A simple high-performance liquid chromatographic method – ion-pair reversed- phase high performance liquid chromatography (RPIC) has been developed and employed for the analysis of zoledronic acid and its related substances in bulk material and commercial dosage forms. The mobile phase was a mixture of methanol (20%) and 5 mmol L–1 phosphate buffer (80%) containing 6 mmol L–1 tetrabutylammonium bromide, adjusted to pH 7.0 with sodium hydroxide. C8 column was used as the stationary phase. The chromatographic conditions were optimized. The active ingredient – zoledronic acid was successfully separated from its related substances, including remained imidazol-1-yiacetic acid in the synthesis of zoledronic acid and other possible impurities of oxidation and decomposition. The excipients did not interfere with the determination of zoledronic acid in commercial dosage formulations. The method was rapid, simple, accurate and reproducible. It was not only successfully employed for the assay of zoledronic acid in bulk material and pharmaceutical dosage forms but also for the determination of its related substances.  相似文献   

16.
The purpose of this study was to quantify the degree of suppression of the perceived bitterness of quinine by various substances and to examine the mechanism of bitterness suppression. The following compounds were tested for their ability to suppress bitterness: sucrose, a natural sweetener; aspartame, a noncaloric sweetener; sodium chloride (NaCl) as the electrolyte; phosphatidic acid, a commercial bitterness suppression agent; and tannic acid, a component of green tea. These substances were examined in a gustatory sensation test in human volunteers, a binding study, and using an artificial taste sensor. Sucrose, aspartame, and NaCl were effective in suppressing bitterness, although at comparatively high concentrations. An almost 80% inhibition of bitterness (calculated as concentration %) of a 0.1 mM quinine hydrochloride solution required 800 mM of sucrose, 8 mM of aspartame, and 300 mM NaCl. Similar levels of bitterness inhibition by phosphatidic acid and tannic acid (81.7, 61.0%, respectively) were obtained at much lower concentrations (1.0 (w/v)% for phosphatidic acid and 0.05 (w/v)% for tannic acid). The mechanism of the bitterness-depressing effect of phosphatidic acid and tannic acid was investigated in terms of adsorption and masking at the receptor site. With phosphatidic acid, 36.1% of the bitterness-depressing effect was found to be due to adsorption, while 45.6% was due to suppression at the receptor site. In the case of 0.05 (w/v)% tannic acid, the total bitterness-masking effect was 61.0%. The contribution of the adsorption effect was about 27.5% while the residual masking effect at the receptor site was almost 33%. Further addition of tannic acid (0.15 (w/v)%), however, increased the bitterness score of quinine, which probably represents an effect of the astringency of tannic acid itself. Finally, an artificial taste sensor was used to evaluate or predict the bitterness-depressing effect. The sensor output profile was shown to reflect the depressant effect at the receptor site rather well. Therefore, the taste sensor is potentially useful for predicting the effectiveness of bitterness-depressant substances.  相似文献   

17.
This paper describes the development and validation of a microemulsion liquid chromatography (MELC) method for simultaneous determination of perindopril tert-butylamine and its impurities in bulk active substances and the pharmaceutical dosage form of tablets. An appropriate resolution with reasonable retention times was obtained for a microemulsion containing 0.24% (w/v) butyl acetate, 0.30% (w/v) ethyl acetate, 2% (w/v) sodium dodecyl sulfate, 7.75% (w/v) n-butanol, and 20.0 mM potassium dihydrogen phosphate, the pH of which was adjusted to 3.70 with 85% orthophosphoric acid. Separations were performed on a Nucleosil 120-5 butyl modified (C4), 250 x 4 mm, 5 microm particle size silica column at 40 degrees C, with a mobile phase flow rate of 1.25 mL/min. UV detection was performed at 254 nm. The established method was subjected to method validation, and required validation parameters were defined. Robustness testing, an important part of method validation, was performed as well. Since robustness validation can be conducted using different experimental designs, the Plackett-Burman design was applied due to its possibility of testing many factors at the same time. The validated MELC method was found to be suitable for the simultaneous determination of perindopril tert-butylamine and its impurities in pharmaceuticals.  相似文献   

18.
以十二烷基硫酸钠(SDS)胶束为准固定相,考察了头孢哌酮、头孢哌酮S-异构体、头孢哌酮杂质A及其他未知杂质在胶束电动毛细管色谱(MECC)分离模式下的分离行为。研究了运行缓冲液的pH值、磷酸盐浓度、SDS浓度、甲醇体积分数、分离电压、分离温度等因素对头孢哌酮、S-异构体、头孢哌酮杂质A及其他杂质的迁移时间、分离度以及可分离出的杂质个数的影响。结果发现,这些因素对头孢哌酮与诸杂质间的分离及检测有显著的影响,尤以pH值为最。它不仅影响它们的迁移时间和分离效率,还直接影响头孢哌酮及其杂质峰的检测。优化后的分离条件:运行缓冲液为70 mmol/L磷酸盐-100 mmol/L SDS (pH 6.5),分离电压为15 kV,分离温度为25 ℃。在此条件下,用非涂渍石英毛细管51.0 cm×75 μm(有效长度42.5 cm),压力进样5 kPa×5 s,在254 nm波长下进行检测,可分离出28个杂质,诸杂质彼此间及与头孢哌酮间可得到有效分离。并将该方法成功地用于测定注射用头孢哌酮钠的含量和有关物质,结果令人满意。  相似文献   

19.
A chiral capillary electrophoresis assay for the simultaneous determination of the optical purity and of related substances of calcium levofolinate has been developed and validated. Using 2,6-dimethyl-beta-cyclodextrin as chiral selector at a concentration of 20 mg/mL, the method was optimized using a full factorial design with four factors including pH and concentration of the background electrolyte, column temperature and separation voltage. Optimized conditions were a 40 mM sodium tetraborate buffer, pH 9.9, a capillary temperature of 16 degrees C, and an applied voltage of 21 kV. Methotrexate was used as internal standard to compensate for injection errors and fluctuations of the migration times. A multiple linear regression model was also used to test the robustness of the method. Validation was performed with respect to specificity, linearity, range, limit of quantification and detection, precision, and accuracy. The assay allowed the detection and determination of related substances including the diastereomeric (6R,2'S)-impurity of levofolinic acid at the 0.1% level, the identification threshold of impurities for orally administered drugs for human use defined by the International Conference on Harmonization guidelines as well as the European Pharmacopoeia.  相似文献   

20.
The characterization of unknown impurities present in netilmicin and sisomicin by liquid chromatography (LC) coupled with mass spectrometry (MS) is described. The volatile ion-pairing agent trifluoroacetic acid (TFA) was used for the retention of the main compounds and their impurities on a reversed-phase (RP) C18 column, because they are highly hydrophilic and basic compounds. The method showed good separation between netilmicin and its four potential related substances prescribed in the European Pharmacopoeia, which were identified by comparison of their retention times with those of the reference substances. Furthermore, in total 16 unknown impurities in a netilmicin sample and six in a sisomicin sample with unknown identity were detected. The structures of the unknown compounds were deduced based on comparison of fragmentation patterns with those of the reference substances investigated in LC/MSn experiments by the use of electrospray ion trap mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号