首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
界面衍生化气相色谱法测定葡萄酒中总有机酸   总被引:4,自引:0,他引:4  
邓丛蕊 《色谱》1997,15(6):505-507
利用离子交换树脂分离、富集葡萄酒中总有机酸并直接在树脂界面上乙酯化,结合气相色谱/质谱法,鉴定并分析了葡萄酒中21种有机酸。  相似文献   

2.
The reaction of carbonate ion dissociation in molten CsI and NaI was studied in the temperature range from the melting point to 800 (CsI) and 830 degrees C (NaI) by a potentiometric method with the use of a membrane oxygen electrode as an indicator one. The dissociation constant of CO(3)(2-) in the molten iodides was found to increase with the temperature. pK values for CsI are 4.47 (650 degrees C), 4.23 (700 degrees C), 3.89 (750 degrees C), 3.44 (800 degrees C); those for NaI are 4.68 (700 degrees C), 4.39 (750 degrees C), 4.17 (800 degrees C), 3.92 (830 degrees C). The plots of pK vs reverse temperature are linear. Carbonate stability in molten CsI is lower than that in the NaI due to lower stability of Cs(2)CO(3) compared with Na(2)CO(3).  相似文献   

3.
The effects of temperature, hematocrit (Hct), lipid level in plasma and cyclosporin A (CyA) level in whole blood on the concentration of CyA in plasma measured by high-performance liquid chromatography were studied in vitro. With rise in blood storage temperature before cells were removed, the concentration of CyA in plasma was increased in the temperature range between 10 degrees C and 37 degrees C, but was decreased between 4 degrees C and 10 degrees C. With rise in Hct, the concentration of CyA in plasma was decreased, and it was more markedly decreased at the blood storage temperature of 4 degrees C than at 37 degrees C. A lipid supplementation study showed that the concentration of CyA in plasma was increased with rise in plasma triglyceride level and in plasma cholesterol level at the storage temperature of 4 degrees C but not at 37 degrees C. Studies of the effect of CyA concentration in blood on the CyA distribution in blood demonstrated that the cellular/plasma concentration (C/P) ratio at low levels (less than 200 micrograms/ml) of plasma CyA ranged from 4 to 10 and was about 2 times higher than that at higher concentrations at 4 degrees C, but the ratio was relatively constant at 37 degrees C. The saturation capacity of the cellular fraction for CyA showed considerable individual variations, but there was no difference between the capacities at 4 degrees C and 37 degrees C. The separation of plasma after equilibration at 37 degrees C made it possible to avoid the variations in the distribution of CyA in whole blood associated with changes in Hct, lipid level in plasma and CyA level in whole blood, and to obtain a measurement reflecting the physiologically significant concentration of CyA in plasma.  相似文献   

4.
Gota C  Uchiyama S  Ohwada T 《The Analyst》2007,132(2):121-126
Fluorescent polymeric thermometers consisting of only N-alkylacrylamide and fluorescent components show rather low temperature resolution in their functional ranges (ca. 15-50 degrees C) because of the occurrence of intermolecular aggregation, which causes hysteresis in their fluorescence response to changes in temperature. By adding an ionic component to prevent such intermolecular aggregation, we obtained four fluorescent polymeric thermometers that offer high temperature resolution (<0.2 degrees C). Each new fluorescent polymeric thermometer covered the temperature range, 9-33 degrees C, 30-51 degrees C, 49-66 degrees C or 4-38 degrees C.  相似文献   

5.
Gas-phase C-H bond dissociation enthalpies (BDEs) in norbornane were determined by quantum chemistry calculations and the C2-H BDE was experimentally obtained for the first time by time-resolved photoacoustic calorimetry. CBS-Q and CBS-QB3 methods were used to derive the values DH degrees (C1-H) = 449 kJ mol-1, DH degrees (C7-H) = 439 kJ mol-1, and DH degrees (C2-H) = 413 kJ mol-1. The experimental result DH degrees (C2-H) = 414.6 +/- 5.4 kJ mol-1 is in excellent agreement with the theoretical value. The trend DH degrees (C1-H) > DH degrees (C7-H) > DH degrees (C2-H) is discussed.  相似文献   

6.
Cross-linked films of poly(l-lysine) (PLL) and enzymes covalently linked to surfaces provided remarkable thermostability, enabling biocatalysis at 90 degrees C. Soret spectra, circular dichroism, and voltammetry showed that PLL films containing peroxidases or myoglobin were stable for up to 9 h at 90 degrees C, while the same enzymes in solution denatured completely within 20 min. Biocatalytic reduction of t-BuOOH with enzyme-PLL films, using rotating disk voltammetry, provided Michaelis kcat/Km values. Results showed that horseradish peroxidase (HRP)-PLL is 3-fold more active than soybean peroxidase (SBP)-PLL at 25 degrees C, but SBP-PLL is slightly more active at 90 degrees C. SBP-PLL films had 8-fold larger kcat/Km values at 90 degrees C compared to 25 degrees C. Oxidation of o-methoxyphenol to 3,3'-dimethoxy-4,4'-biphenoquinone by peroxidase-PLL-coated silica colloids gave better yields at 90 degrees C than 25 degrees C, suggesting increasing catalytic efficiency and selectivity at the higher temperature. These biocolloids were reusable with little loss of activity at 90 degrees C.  相似文献   

7.
Liu Y  Cui L  Guan F  Gao Y  Hedin NE  Zhu L  Fong H 《Macromolecules》2007,40(17):6283-6290
Uniform nylon 6 nanofibers with diameters around 200 nm were prepared by electrospinning. Polymorphic phase transitions and crystal orientation of nylon 6 in unconfined (i.e., as-electrospun) and a high T(g) (340 degrees C) polyimide confined nanofibers were studied. Similar to melt-spun nylon 6 fibers, electrospun nylon 6 nanofibers also exhibited predominant, meta-stable gamma crystalline form, and the gamma-crystal (chain) axes preferentially oriented parallel to the fiber axis. Upon annealing above 150 degrees C, gamma-form crystals gradually melted and recrystallized into the thermodynamically stable alpha-form crystals, which ultimately melted at 220 degrees C. Release of surface tension accompanied this melt-recrystallization process, as revealed by differential scanning calorimetry. For confined nanofibers, both the melt-recrystallization and surface tension release processes were substantially depressed; gamma-form crystals did not melt and recrystallize into alpha-form crystals until 210 degrees C, only 10 degrees C below the T(m) at 220 degrees C. After complete melting of nano-confined crystals at 240 degrees C and recrystallization at 100 degrees C, only alpha-form crystals oriented perpendicular to the nanofiber axis were obtained. In the polyimide-confined nanofibers, the Brill transition (from the monoclinic alpha-form to a high temperature monoclinic form) was observed at 180-190 degrees C, which was at least 20 degrees C higher than that in unconfined nylon 6 at approximately 160 degrees C. This, again, was attributed to the confinement effect.  相似文献   

8.
Subcritical water has been recently employed as the mobile phase to eliminate the use of organic solvents in reversed-phase liquid chromatography. Although the influence of temperature on retention in subcritical water chromatography has been reported, the temperature effect on peak width and column efficiency has not yet been quantitatively studied. In this work, several polar and chlorinated compounds are separated using pure subcritical water on Zorbax RX-C8, PRP-1 (polystyrene-divinylbenzene), Hypersil ODS, and ZirChrom-polybutadiene columns. Isothermal separations are performed at temperatures ranging from 60 degrees C to 160 degrees C. The retention time and peak width of analytes are reduced with increasing temperature. However, the column efficiency is either improved or almost unchanged with the increasing temperature in the low-temperature range (lower than the 100 degrees C to 120 degrees C range), but it is decreased when temperature is further raised in the high-temperature range (higher than the 100 degrees C to 120 degrees C range). Therefore, a maximum in column efficiency is obtained at temperatures within the 100 degrees C to 120 degrees C range in most cases.  相似文献   

9.
Twenty-three laboratories participated in a collaborative study to compare the relative effectiveness of Rappaport-Vassiliadis (RV) medium incubated at 42 degrees C, selenite cystine (SC) broth (35 degrees C), and tetrathionate (TT) broth (35 and 43 degrees C) for recovery of Salmonella from the following foods with a low microbial load: dried egg yolk, dry active yeast, ground black pepper, guar gum, and instant nonfat dry milk. For dry active yeast, lauryl tryptose (LT) broth, incubated at 35 degrees C, was used instead of SC broth. All of the foods were artificially inoculated with single Salmonella serovars, that had been lyophilized before inoculation, at high and low target levels of 0.4 and 0.04 colony forming units/g food, respectively. For analysis of 870 test portions, representing all of the foods except yeast, 249 Salmonella-positive test portions were detected by RV medium, 265 by TT broth (43 degrees C), 268 by TT broth (35 degrees C), and 269 by SC broth (35 degrees C). For analysis of 225 test portions of yeast, 79 Salmonella-positive test portions were detected by RV medium, 79 by TT broth (43 degrees C), 84 by TT broth (35 degrees C), and 68 by LT broth (35 degrees C). RV medium was comparable to, or even more effective than, the other selective enrichments for recovery of Salmonella from all of the foods except guar gum. It is recommended that RV (42 degrees C) and TT (35 degrees C) be used with foods that have a low microbial load, except for guar gum for which SC (35 degrees C) and TT (35 degrees C) are recommended.  相似文献   

10.
The use of ultrahigh column temperatures, up to 110 degrees C, in micellar electrokinetic capillary chromatography was investigated. The number of plates generated per unit time increased from 0.22 to 12.8 plates/s for separations at 15 degrees C and 110 degrees C, respectively. Ultrahigh-temperature micellar electrokinetic capillary chromatography was used for the separation of cyclic undecapeptides (cyclosporins). A minimum resolution of 1.39 was calculated for a critical peak pair at 110 degrees C, which is more than a 50% increase over resolution generated at 40 degrees C. During a run time of more than 90 min at 110 degrees C and at pH 9.3, no sample degradation or solvent boiling was observed.  相似文献   

11.
The metastable crystalline lamella was found in the Krafft transition of aqueous cetylpyridinium chloride (CPC) solutions. Temperature-dependent profiles of small-angle X-ray scattering (SAXS) for the CPC solution incubated for 10 min at 5 degrees C exhibited the metastable lamella structure with a lattice spacing of dL = 3.19 nm at temperatures below 12 degrees C and the stable lamella structure with a lattice spacing of dL = 2.85 nm at temperatures between 12 and 19 degrees C. The former lamella structure, however, was not observed in the temperature scanning SAXS profiles of the CPC solution incubated for 24 h at 5 degrees C. The latter lamella structure observed in the SAXS profile mentioned above started melting at 18 degrees C. The electric conductance change of the CPC solution with a time elapsed after dropping the temperature showed the existence of the temperature-dependent induction period in the Krafft transition, indicating high activation energies for the transition. In the differential scanning calorimetry measurements over temperatures ranging from 5 to 30 degrees C, a single endothermic enthalpy peak at 19 degrees C observed for the CPC solution incubated at 5 degrees C for a longer period than 6 h was split into double peaks at 14 and 19 degrees C when the same solution was incubated at 5 degrees C for a shorter period than 6 h. The observed calorimetric behavior is explained by the existence of the metastable crystalline state that grows faster and melts at a lower melting temperature than the stable crystalline state.  相似文献   

12.
A method was developed to analyze methyl tert.-butyl ether (MTBE) and its degradation products by gas chromatography with mass spectrometry (GC-MS) or flame ionization detection (FID) with direct aqueous injection. The column had dimensions of 30 m x 0.25 mm with film thickness 0.25 microm and a stationary phase of FFAP (nitroterephthalic acid-modified polyethylene glycol). The optimized GC conditions for non-acid components were as follows: carrier gas flow-rate,l mL/min; oven temperature, 35 degrees C for 5.5 min, ramped to 90 degrees C at 25 degrees C/min, then ramped to 200 degrees C at 40 degrees C/min and held at 200 degrees C for 8 min. The conditions for the acid components were: carrier gas flow-rate, 1 mL/min; oven temperature, 110 degrees C for 2 min, ramped to 150 degrees C at 10 degrees C/min, then ramped to 200 degrees C at 40 degrees C/min. The injection port contained a silanized-glass reverse-cup liner filled with Carbofrit. The minimum concentrations for the linear range for the selective ion monitoring mode were 30 to 100 microg/L, depending on the analytes. The minimum detection limit was 1 mg/L for MTBE and tert.-butanol when using FID. More components could be analyzed with the FFAP-type column than with the cyanopropylphenyl-dimethyl polysiloxane-type column.  相似文献   

13.
Several quantitative structure-property relationship (QSPR) models between 15 basic physical properties or thermodynamic functions of alkanes and their molecular electronegative distance vectors (MEDV) are developed. For six of the properties-boiling point (BP), density (D) at 25 degrees C, refraction index (RI) at 25 degrees C, critical temperature (CT), critical pressure (CP), and surface tension (ST) at 20 degrees C-logarithmic models are found to give better results than conventional (linear) models since the values of these properties all tend to a limit with increasing carbon chain length. All models are created using multiple linear regression (MLR). Conventional models are proposed for the remaining nine physical properties or thermodynamic functions: molar volume (MV) at 20 degrees C, molar refraction (MR) at 20 degrees C, heat capacity (HC) at 300 K, enthalpy (E) at 300 K, heats of vaporization (HV) at 25 degrees C, heat of atomization (HA) at 25 degrees C, standard heat of formation (HF) at 25 degrees C, heat of formation in liquid (HFL) at 25 degrees C, and heat of formation in gas (HFG) at 25 degrees C.  相似文献   

14.
Shape transitions were examined with regard to the solubilization of the poorly water-soluble drug indomethacin (IMC) in the nonionic surfactants heptaethylene oxide tetradecyl (C14E7) and hexadecyl (C16E7) ethers by means of a dynamic light scattering technique. The cloud points of the pure C14E7 and C16E7 micelles ranged from 58 to 62 degrees C and from 52.1 to 55.6 degrees C, respectively, at surfactant concentrations of 1 to 10 mM. The cloud points of IMC-solubilized micelles increased by approximately 1 to 5 degrees . The sizes of the pure C14E7 micelles were 4 to 14 nm at 20 to 40 degrees C at a concentration of 2 to 20 mM. The apparent hydrodynamic radius (R happ) of pure C16E7 micelles varied with temperature and concentration. C16E7 surfactant formed small spherical micelles at 20 and 25 degrees C at concentrations below 5 mM; the size of the micelles was approximately 5 nm. On the other hand, from 30 to 40 degrees C and at a higher concentration, C16E7 formed elongated cylindrical micelles, and these elongated micelles entangled or overlapped each other. The R happ of the IMC-solubilized C14E7 micelles at 20 to 40 degrees C and of C16E7 micelles at 20 degrees C increased compared to that of pure micelles. On the other hand, the cylindrical micelles of C16E7 decreased in size and turned into spherical ones because of the hydrophobicity between the micelles caused by solubilization of IMC. This phenomenon was confirmed by transmission electron microscope (TEM) images.  相似文献   

15.
Thermal stability of well-crystallized cubic boron nitride (cBN) films grown by chemical vapor deposition has been investigated by cathodoluminescence (CL), Raman spectroscopy, and scanning electron microscopy (SEM) with the cBN films annealed at various temperatures up to 1,300 degrees C. The crystallinity of the cBN films further improves, as indicated by a reduction of the relevant Raman line width, when the annealing temperature exceeds 1,100 degrees C. Structural damage or amorphization was observed on the grain boundaries of the cBN crystals when annealing temperature reaches 1,300 degrees C. The CL spectra are found to be unchanged up to 1,100 degrees C after annealing at 500 degrees C, showing the stability of the cBN films in electronic properties up to this temperature. New features were observed in the CL spectra when annealing temperature reaches 1,200-1,300 degrees C.  相似文献   

16.
松油醇的分析及其生产工艺改进的研究   总被引:4,自引:0,他引:4  
梁鸣  陈敏  蔡春平  翁若荣 《色谱》2002,20(6):577-581
 应用气相 红外光谱(GC FTIR)和气相 质谱(GC MS)对合成松油醇及其杂质成分、原料松节油、合成过程中间体粗油(红油和黄油)和天然松油醇进行了分析研究,为判断松油醇产品中杂质产生的原因及改进生产工艺提供了依据。研究结果表明,松油醇中的杂质主要为长叶烯和石竹烯,是由原料松节油带入的。天然松油醇粗油中主要成分是1,8 桉叶素、反式 4 艹守醇、p 异丙烯基甲苯、顺式 4 艹守醇、芳樟醇、樟脑、龙脑、4 松油醇、α 松油醇和黄樟素。天然松油醇中β 松油醇和γ 松油醇含量不如合成松油醇中的含量高,以此可判断松油醇是天然的还是合成的。  相似文献   

17.
The thermal properties of the dispersion of sodium salt of dimyristoylphosphatidylglycerol (NaDMPG) in water have been investigated as functions of incubation temperature and aging time by DSC, XRD, sodium ion activity, pH, zeta-potential, and IR measurements. The DSC charts for NaDMPG dispersions incubated below 30 degrees C showed an endothermic peak at 31.7 degrees C with a small shoulder peak at Tm (gel-liquid crystal transition temperature: 23.5 degrees C). The temperature of 31.7 degrees C coincides with the T* temperature at which a high-order transition in the NaDMPG bilayer assembly has been found to occur in our previous studies. However, no peak was observed for the dispersions incubated above 32 degrees C. These results indicate that thermal properties of NaDMPG bilayers definitely differ below and above the T* temperature. The dispersion which had been once incubated at 40 degrees C for 24 h never showed the endothermic peak at T* even after the further aging at 3 degrees C for 12-day. Namely, the NaDMPG bilayer assembly exhibits an intensive thermohysteresis. The XRD charts for the NaDMPG dispersions incubated at 25 degrees C showed a sharp X-ray diffraction pattern corresponding to the repeat distance of d = 4.75 nm regardless of their aging time, while the dispersions incubated at 40 degrees C had no diffraction peak until 9-day elapsed. After 10-day aging at 40 degrees C, however, a diffraction peak corresponding to d = 5.55 nm clearly appeared. In the DSC measurements for the dispersion incubated at 40 degrees C, a few endothermic peaks began to appear between Tm and T* after approximately 7-day aging. Then, they shifted toward higher temperatures and finally converged into a single peak at 40-42 degrees C after 14-day aging. These XRD and DSC peaks observed after a long period of aging time above T* suggest that conformations of the hydrophilic groups and the hydrocarbon chains in the NaDMPG bilayers take a more tight and closer arrangement very slowly via an intermediate state above T*, and a new gel phase of the bilayers is consequently formed, the transition temperature (T(I) temperature) of which is 40-42 degrees C. A molecular interpretation for such transition processes in the bilayer assembly of NaDMPG dispersions has been proposed on the basis of pH, sodium ion activity, zeta-potential, IR data, etc.  相似文献   

18.
In situ crystallization of low-melting ionic liquids   总被引:1,自引:0,他引:1  
Single crystals of five very low-melting ionic liquids, [emim]BF4 (mp -1.3 degrees C), [bmim]PF6 (+1.9 degrees C), [bmim]OTf (+6.7 degrees C), [hexpy]NTf2 (-3.6 degrees C), and [bmpyr]NTf2 (-10.8 degrees C), have been grown using a combined calorimetric and zone-melting approach and their crystal structures determined by X-ray diffraction.  相似文献   

19.
Eicosapentaenoic acid (EPA) Production byMortierella alpina ATCC 32222   总被引:2,自引:0,他引:2  
Mortierella alpina ATCC 32222 grew well at 11 degrees C, as well as at 25 degrees C in a liquid medium containing glucose or linseed oil and yeast extract. High Eicosapentaenoic acid (EPA) yield was obtained at 11 degrees C. M. alpina cells did not produce EPA at 25 degrees C in the absence of linseed oil, whereas at 11 degrees C, EPA accumulation was noted in the absence of linseed oil. When grown at 11 degrees C for 10 d in a medium containing 2% linseed oil as carbon source, the mycelium yielded 435 mg/L EPA (20 mg EPA/g dry mycelia) with 5.1% in lipid fraction. By gradually increasing the concentration of linseed oil to 4%, yield of biomass and EPA were increased to 43 g/L and 596 mg/L, respectively.  相似文献   

20.
Decay of metarhodopsin II was accelerated by hydroxylamine treatment or dark incubation of metarhodopsin II at 30 degrees C. The products thus obtained after decay of metarhodopsin II induced GTPase activity on transducin as well as metarhodopsin II suggesting that rhodopsin could activate transducin after the decay of metarhodopsin II intermediate. After urea-treated bovine rod outer segment membrane was completely bleached, rhodopsin in the membrane was regenerated by the addition of 11-cis retinal at various temperatures between 0 and 37 degrees C. The capacity to induce GTPase activity on transducin and phosphate incorporating capacity catalyzed by rhodopsin kinase were measured on such rhodopsins. The results showed that: (1) Regeneration of alpha band of rhodopsin was complete regardless of regeneration temperature; (2) When regenerated at temperatures below 10 degrees C, rhodopsins induced a GTPase activity on transducin in the dark even after treatment with hydroxylamine, whereas rhodopsins after regeneration at temperatures above 13 degrees C did not; (3) When regenerated at 0 degrees C, rhodopsin was phosphorylated if incubated with rhodopsin kinase and ATP in the dark, whereas the spectrally regenerated rhodopsin at 30 degrees C was not. The complete quenching of functions of photoactivated rhodopsin was achieved by recombination with 11-cis retinal at temperatures above 13 degrees C but not below 10 degrees C suggesting the existence of a low temperature intermediate upon regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号