首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An inverted supercritical CO2/aqueous biphasic catalytic system allows highly enantioselective hydrogenation of polar water-soluble substrates and efficient recycling of the CO2-philic catalysts.  相似文献   

2.
3.
Dendrimer-encapsulated nanoparticles are shown to be versatile catalysts for both the hydrogenation of styrene and Heck heterocoupling of iodobenzene and methacrylate in supercritical CO2 (scCO2).  相似文献   

4.
The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface.  相似文献   

5.
Nanosecond pulsed laser ablation (PLA) of gold plate with an excitation wavelength of 532?nm was carried out in supercritical CO2 (scCO2) to fabricate gold nanoparticles. Surface morphology of the gold plate after irradiation and the crater depth after PLA were observed by scanning electron microscopy and laser scanning microscopy, while extinction spectra of gold nanoparticles collected in the glass slide was measured by UV?CVis spectrophotometer. The gold plate was ablated at various scCO2 densities and irradiation times at constant temperature of 40??C. The ablation was also conducted at atmospheric condition with air to evaluate the environmental dependence of ablation. Both surface morphology of the irradiated gold plate and crater depth formation were significantly affected by the changes in scCO2 density, the surrounding environment, and irradiation time. As expected, the increasing scCO2 density resulted in a deeper ablation crater, however, the deepest crater was obtained at a density of 0.63?g/cm3 or pressure of 10?MPa. Gold nanoparticles generated by PLA in scCO2 have been confirmed at the spectra band near 530?nm.  相似文献   

6.
Selective hydrogenation with supported metal catalysts widely used in the production of fine chemicals and pharmaceuticals often faces a trade-off between activity and selectivity, mainly due to the inability to adjust one factor of the active sites without affecting other factors. In order to solve this bottleneck problem, the modulation of the microenvironment of active sites has attracted more and more attention, inspired by the collaborative catalytic mode of enzymes. In this perspective, we aim to summarize recent advances in the regulation of the microenvironment surrounding supported metal nanoparticles (NPs) using porous materials enriched with organic functional groups. Insights on how the microenvironment induces the enrichment, oriented adsorption and activation of substrates through non-covalent interaction and thus determines the hydrogenation activity and selectivity will be particularly discussed. Finally, a brief summary will be provided, and challenges together with a perspective in microenvironment engineering will be proposed.

Insights on microenvironment engineering for metal nanoparticles using porous materials enriched with organic groups and how it determines the hydrogenation performance through non-covalent interaction are highlighted.  相似文献   

7.
One-pot deposition of Pd onto TiO(2) has been achieved through directly contacting palladium(II) salt with nanosized functionalized TiO(2) support initially obtained by sol-gel process using titanium isopropoxide and citric acid. Citrate groups act as functional moieties able to directly reduce the Pd salt avoiding any further reducing treatment. Various palladium salts (Na(2)PdCl(4) and Pd(NH(3))(4)Cl(2)·H(2)O) and titanium to citrate (Ti/CA) ratios (20, 50, and 100) were used in order to study the effect of the nature of the precursor and of the citrate content on the final Pd particle size and catalytic properties of the as-obtained Pd/TiO(2) systems. Characterization was performed using N(2) adsorption-desorption isotherms, ICP-AES, FTIR, XRD, XPS, and TEM. The as-obtained hybrid Pd/TiO(2) catalysts were tested in the selective hydrogenation (HYD) of an α,β-unsaturated aldehyde, i.e. cinnamaldehyde. Citrate-free Pd/TiO(2)-based catalysts present lower selectivity into saturated alcohol. However, citrate-functionalized Pd/TiO(2) catalyst seems to control the selectivity, the particle size and dispersion of Pd NPs leading to high intrinsic activity.  相似文献   

8.
Molecular dynamics simulations have been performed to study the potential of mean force (PMF) between passivated gold nanoparticles (NPs) in supercritical CO(2) (scCO(2)). The nanoparticle model consists of a 140 atom gold nanocore and a surface self-assembled monolayer, in which two kinds of fluorinated alkanethiols were considered. The molecular origin of the thermodynamics interaction and the solvation effect has been comprehensively studied. The simulation results demonstrate that increasing the solvent density and ligand length can enhance the repulsive feature of the free energy between the passivated Au nanoparticles in scCO(2), which is in good agreement with previous experimental results. The interaction forces between the two passivated NPs have been decomposed to reveal various contributions to the free energy. It was revealed that the interaction between capping ligands and the interaction between the capping ligands and scCO(2) solvent molecules cooperatively determine the total PMF. A thermodynamic entropy-energy analysis for each PMF contribution was used to explain the density dependence of PMF in scCO(2) fluid. Our simulation study is expected to provide a novel microscopic understanding of the effect of scCO(2) solvent on the interaction between passivated Au nanoparticles, which is helpful to the dispersion and preparation of functional metal nanoparticles in supercritical fluids.  相似文献   

9.
10.
11.
Rhodium nanoparticles dispersed by a CO2 microemulsion are effective catalysts for rapid hydrogenation of arenes in supercritical CO2.  相似文献   

12.
We report in this paper novel chemistry that addresses the problem of surfactant solubility in supercritical CO2 for metal nanoparticle synthesis. This new approach for the preparation of organic-functionalized inorganic nanoparticles relies on the reduction of a metal precursor in a CO2-containing insoluble polymer. Reduction of the metal with H2 leads to small nanocrystals stabilized by the polymer with a relatively small polydispersity. The functionalized metal nanoparticles are recovered as a dry powder, free of any organic solvents, which can then be resuspended in an appropriate solvent. This approach limits the number of steps for the preparation of functional nanoparticles which are ready for use. To illustrate this, we report results of the preparation of palladium and silver nanoparticles of 3-5 nm size stabilized with hyperbranched polyamines, functionalized with perfluoroalkyl, perfluorooligoether, non-fluorinated alkyl, polysiloxane, or polyethylene glycol moieties.  相似文献   

13.
Over the past few years, nanometer-sized transition metal particles have been intensively pursued as potentially advanced catalysts because their special properties lie between those of single metal atoms and bulk metal. Achieving the accurate control of particle size and overall particle size distribution is one of the most crucial challenges to provide unique chemical and physical properties. We highlight herein our recent progress in the exploitation of promising nanoparticle (NP)-based catalysts designed by precise architecture that enable efficient and selective chemical transformations and can be completely separated and are recyclable. This perspective article consists of the following two specific topics: (i) multifunctional catalysts based on magnetic NPs and (ii) new routes for the preparation of supported metal NPs catalysts. The synthetic strategies described here are simple and general for practical catalyst design, thus allowing a strong protocol for creating various nanostructured catalysts.  相似文献   

14.
An inverted supercritical carbon dioxide (scCO(2))/aqueous biphasic system has been used as reaction media for Rh-catalysed hydrogenation of polar substrates. Chiral and achiral CO(2)-philic catalysts were efficiently immobilised in scCO(2) as the stationary phase, while the polar substrates and products were contained in water as the mobile phase. Notably, product separation and catalyst recycling were conducted without depressurisation of the autoclave. The catalyst phase was reused several times with high conversion and product recovery of more than 85 %. Loss of rhodium and phosphorus by leaching were found to be below the detection limit after the first two cycles in the majority of repetitive experiments. The reaction conditions were optimised with a minimum of experiments by using a simplex algorithm in a sequential optimisation. Total turnover numbers (TTNs) of up to 1600, turnover frequencies (TOFs) of up to 340 h(-1) and ee's up to 99 % were obtained in repetitive batch operations. The scope of the devised catalytic system has been investigated and a semicontinuous reaction setup has been implemented. The chiral ligand (R,S)-3-H(2)F(6)-BINAPHOS allowed highly enantioselective hydrogenation of itaconic acid and methyl-2-acetamidoacrylate combined with a considerable catalyst stability in these reaction media.  相似文献   

15.
Acetate-stabilized ruthenium nanoparticles were prepared by the NaBH4 reduction of the metal precursor salt at room temperature. Nanoparticles with a mean diameter of 2.20 nm and a standard deviation of 1.03 nm could be obtained under experimental conditions. The Ru nanoparticles so obtained could be easily extracted to a toluene solution of alkylamine, giving rise to alkylamine-stabilized Ru nanoparticles with a mean diameter of 2.96 nm and a standard deviation of 0.92 nm. The new found role of acetate stabilization was used to formulate a mechanism for the formation of metal (Pt, Ru) nanoparticles in ethylene glycol. In this mechanism metal nanoparticles are stabilized in ethylene glycol by adsorbed acetate ions, which are produced as a product of the OH- catalyzed reaction between the metal precursor salt and ethylene glycol.  相似文献   

16.
An aqueous emulsion containing ionic Co2+ and Br- species stabilised by fluorous surfactant-like species in supercritical CO2-air mixture acts as a nano-reactor with excellent interfacial contacts of all necessary hydrophilic/hydrophobic species, which renders safe operation of catalytic aerial oxidation of toluene at high yields.  相似文献   

17.
A new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO2) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity. Synthesis of Pd nanoparticles in perfluorohydrocarboxylate anionic micelles in scCO2 is therefore carried out in a stainless steel batch reactor at 40 degrees C and in a 150 bar CO2/H2 mixture. Homogeneous dispersion of the microemulsion containing Pd nanoparticles in scCO2 is observed through a sapphire window reactor at W0 ratios (molar water-to-surfactant ratios) ranging from 2 to 30. It is also evidenced that the use of micelle assemblies as new metal catalyst nanocarriers could indeed exert a great influence on product selectivity. The hydrogenation of a citral molecule that contains three reducible groups (aldehyde, double bonds at the 2,3-position and the 6,7-position) is studied. An unusually high selectivity toward citronellal (a high regioselectivity toward the reduction of the 2,3-unsaturation) is observed in supercritical carbon dioxide. On the other hand, when the catalysis is carried out in the conventional liquid or vapor phase over the same reaction time, total hydrogenation of the two double bonds is achieved. It is thought that the high kinetic reluctance for double bond hydrogenation of the citral molecule at the hydrophobic end (the 6,7-position) is due to the unique micelle environment that is in close proximity to the metal surface in supercritical carbon dioxide that guides a head-on attack of the molecule toward the core metal particle.  相似文献   

18.
Ruthenium nanoparticles (RuNPs) were prepared through the hydrogenation of [Ru(COD)(COT)] (COD = 1,5-cyclooctadiene, COT = 1,3,5-cyclooctatriene) in the presence of diphosphites derived from carbohydrates as stabilizing agents, and interestingly, structural modifications of the diphosphite backbone were found to influence nanoparticle size and dispersity, as well as their catalytic activity in arene hydrogenation.  相似文献   

19.
《Mendeleev Communications》2019,29(4):382-384
  1. Download : Download high-res image (73KB)
  2. Download : Download full-size image
  相似文献   

20.
A selective hydrogenation of maleic anhydride to either gamma-butyrolactone or succinic anhydride over simple Pd/Al2O3 catalyst under supercritical CO2 medium is described for the first time which has considerable promise for both lab-scale as well as industrial selective hydrogenations of low vapor pressure compounds without employing environmentally harmful organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号