首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The interactions of conventional cationic, i.e. dodecyl-(DTAB), tetradecyl-(TTAB), and hexadecyltrimethylammonium bromides (HTAB), and dimeric cationic surfactants, i.e. dimethylene bis decyl-(10-2-10), and dodecyldimethylammonium bromides (12-2-12) with anionic polyelectrolytes, were studied by fluorescence measurements. The variation of I1/I3 ratio of the fluorescence of pyrene in aqueous solutions of polyelectrolytes was measured as a function of surfactant concentration. A three-step aggregation process involving the critical aggregation concentration (cac) and critical micelle concentration (cmc) was observed in each case. The cationic surfactants with lower hydrophobicity demonstrated higher degree of binding and vice versa.  相似文献   

2.
The aggregation of two polymerisable surfactants dodecylethylmethacrylatedimethylammonium bromide (C12PS) and hexadecylethylmethacrylatedimethylammonium bromide (C16PS) was studied with a battery of methods. Both surfactants form premicelles at low concentration, and show a critical micelle concentration and a transition between spherical and rod-like micelles. The micelle ionization degree and the adsorption at the air/solution interface were also studied. Results are interpreted on the basis of the conformation of the polar head group.  相似文献   

3.
Surfactants prevent the irreversible aggregation of partially refolded proteins, and they are also known to assist in protein refolding. A novel approach to protein refolding that utilizes a pair of low molecular weight folding assistants, a detergent and cyclodextrin, was proposed by Rozema and Gellman (D. Rozema, S.H. Gellman, J. Am. Chem. Soc. 117 (1995) 2373). We report the refolding of bovine serum albumin (BSA) assisted by these artificial chaperones, utilizing gemini surfactants for the first time. A combination of cationic gemini surfactants, bis(cetyldimethylammonium)pentane dibromide (C(16)H(33)(CH(3))(2)N(+)-(CH(2))(5)-N(+)(CH(3))(2)C(16)H(33)·2Br(-) designated as G5 and bis(cetyldimethylammonium)hexane dibromide (C(16)H(33)(CH(3))(2)N(+)-(CH(2))(6)-N(+)(CH(3))(2)C(16)H(33)·2Br(-) designated as G6 and cyclodextrins, was used to refold guanidinium chloride (GdCl) denatured BSA in the artificial chaperone assisted two step method. The single chain cationic surfactant cetyltrimethylammonium bromide (CTAB) was used for comparative studies. The studies were carried out in an aqueous medium at pH 7.0 using circular dichroism, dynamic light scattering and ANS binding studies. The denatured BSA was found to get refolded by very small concentrations of gemini surfactant at which the single chain counterpart was found to be ineffective. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study it is expected that gemini surfactants may prove useful in the protein refolding operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation.  相似文献   

4.
The present work focuses on the clouding phenomenon in an amphiphilic drug [amitriptyline (AMT), which is a tricyclic antidepressant] solution. A 50-mM AMT solution prepared in 10 mM of sodium phosphate (SP) buffer was taken where the cloud point (CP) was found to decrease with increasing pH. The same CP decreasing trend (with pH increase) followed in the presence of a fixed concentration (50 mM) of added salts [NaBr, and tetra-n-butylammonium bromide (TBuAB)]. The addition of increasing amounts of quaternary bromides (tetramethylammonium bromide, tetraethylammonium bromide, tetra-n-propylammonium bromide, TBuAB, and tetra-n-pentylammonium bromide) to 50 mM of AMT solution (prepared in 10 mM of SP buffer) caused continuous increase in CP, which was found to be dependent upon the alkyl chain length of that particular salt. The similar type of CP increase was also observed in the presence of conventional (cetyltrimethylammonium bromide and tetradecyltrimethylammonium bromide) and gemini surfactants [bis(hexadecyldimethylammonium)hexane, bis(hexadecyldimethylammonium)pentane, and bis(hexadecyldimethylammonium)butane]. The overall behavior was discussed in terms of electrostatic interactions, micellar growth, and mixed micelle formation.  相似文献   

5.
The interactions of a hydrophobic modified thermosensitive polymer poly(N-isopropylacrylamide)-ran-poly(methacrylic acid)-ran-poly(octadecyl acrylate) with five ionic surfactants, namely, sodium dodecyl sulfate (SDS), dodecayltrimethylaminium bromide (DTAB), 1,2-bis(dodecyldimethylammonio)- hexane dibromide (12-6-12), 1-dodecanaminium, N,N′-[(1,4-dioxo-1,4-butanediyl) bis(oxy-2,1-ethanediyl)] bis[N,N-dimethyl-, bromide] (12-su-12), and dodecanaminium, N, N′-[[(2E)-1,4-dioxo-2-butene-1, 4-diyl]bis(o-xy-2,1ethanediy-l)] bis[N,N-dimethyl-, bromide] (12-fo-12) were investigated by the static-steady fluorescence methods using crystal violet and pyrene as the probes. It was found that the SDS interacted with the polymer driven by the hydrophobic interaction, while the cationic surfactants first entered the core of the polymer micelle through the hydrophobic interaction then the corona area of the polymer micelle through the hydrophobic and static electrical interactions. Measurements of the transmittances of the polymer/surfactants/PBS mixtures at different temperatures showed that the SDS suppressed the phase transition of the system, while additions of the cationic surfactants into the polymer induced the phase transitions of the polymer complex systems first, then suppressed them after the minimum values of the lower critical phase transition temperatures (LPTT) was reached. It was also found that increase of the MAA content in the polymer could broaden the LPTT range adjusted by the cationic surfactants.   相似文献   

6.
The interactions between oppositely charged surfactant/polymer mixtures have been studied using conductivity and turbidity measurements. The dependence of aggregation phenomenon on the chain length and head group modifications of conventional cationic surfactants, i.e., hexadecyl- (HTAB), tetradecyl- (TTAB), and dodecyltrimethylammonium bromides (DTAB) and dimeric cationic surfactants, i.e., decyl- (DeDGB) and dodecyldimethylgemini bromides (DDGB), is investigated. It was observed that cationic surfactants induce cooperative binding with anionic polyelectrolytes at critical aggregation concentration (cac). The cac values are considerably lower than the critical micelle concentration (cmc) values for the same surfactant. After the complete complexation, free micelles are formed at the apparent critical micelle concentration (acmc), which is slightly higher in aqueous polyelectrolyte than in pure water. Among the conventional and dimeric cationic surfactants, DTAB and DeDGB, respectively, have been found to have least interactions with oppositely charged polyelectrolytes.  相似文献   

7.
Mixed micellization of dimeric cationic surfactants tetramethylene-1,4-bis(hexadecyldimethylammonium bromide)(16-4-16), hexamethylene-1,6-bis(hexadecyldimethylammonium bromide) (16-6-16) with monomeric cationic surfactants hexadecyltrimethylammonium bromide (CTAB), cetylpyridinium bromide (CPB), cetylpyridinium chloride (CPC), and tetradecyltrimethylammonium bromide (TTAB) have been studied by conductivity and steady-state fluorescence quenching techniques. The behavior of mixed systems, their compositions, and activities of the components have been analyzed in the light of Rubingh's regular solution theory. The results indicate synergism in the binary mixtures. Ideal and experimental critical micelle concentrations (i.e., cmc(*) and cmc) show nonideality, which is confirmed by beta values and activity coefficients. The micelle aggregation numbers (N(agg)), evaluated using steady-state fluorescence quenching at a total concentration of 2 mM for CTAB/16-4-16 or 16-6-16 and 5 mM for TTAB/16-4-16 or 16-6-16 systems, indicate that the contribution of conventional surfactants was always more than that of the geminis. The micropolarity, dielectric constant and binding constants (K(sv)) of mixed systems have also been evaluated from the ratios of respective peak intensities (I(1)/I(3) or I(0)/I(1)).  相似文献   

8.
The interactions between oppositely charged surfactant-polymer systems have been studied using surface tension and conductivity measurements and the dependence of aggregation phenomenon over the polyelectrolyte concentration and chain length of cationic ATAB surfactants, cetyltrimethyl ammonium bromide (CTAB), tetradecyltrimethyl ammonium bromide (TTAB), and dodecyltrimethyl ammonium bromide (DTAB) have been investigated. It was observed that cationic surfactants induce cooperative binding with anionic polyelectrolyte at critical aggregation concentration (cac). The cac values of ATAB surfactants in the presence of anionic polyelectrolyte, sodium carboxy methyl cellulose (NaCMC), are considerably lower than their critical micelle concentration (cmc). After the complete complexation, free micelles are formed at the apparent critical micelle concentration (acmc), which is slightly higher in polyelectrolyte aqueous solution than in pure water. Among the cationic surfactants (i.e., CTAB, TTAB, and DTAB), DTAB was found to have least interaction with NaCMC. Surfactants with longer tail size strongly favor the interaction, indicating the dependence of aggregation phenomenon on the structure, morphology, and tail length of the surfactant.   相似文献   

9.
 The conductances of trimethyltetradecylammonium bromide (TTAB) + trimethylhexa decylammonium bromide (HTAB) and TTAB + trimethyldodecylammonium bromide (DTAB) mixtures over the entire mole fraction range were measured in aqueous poly(vinyl pyrrolidone) (PVP) containing 1–10 wt% PVP at 30 °C. Each conductivity (κ) curve for the TTAB + HTAB mixtures showed two breaks corresponding to two aggregation processes over the whole mole fraction range, except in the case of pure TTAB, where a single break corresponding to the conventional critical micelle concentration (cmc) was observed. In the case of TTAB + DTAB mixtures, each κ curve at a particular mole fraction of TTAB showed only one break, which was quite close to a similar one in pure water. In TTAB + HTAB mixtures, the first break is called the critical aggregation concentration. It is close to the conventional cmc and is attributed to the polymer-free micelle formation, whereas the second break is due to the polymer-bound micellar aggregates. However, no polymer-bound micellar aggregation process was observed in the case of TTAB + DTAB mixtures. Therefore, the presence of micelle–PVP interactions in the TTAB + HTAB case have been attributed to the stronger hydrophobicity of HTAB or TTAB + HTAB micelles in comparison to that of single or mixed micelles of TTAB + DTAB mixtures. From the conductivity data, various micelle parameters in the presence of PVP have been computed and discussed in terms of micelle–polymer interactions. The mixing behavior of TTAB +  HTAB corresponding to the first break, and that of TTAB + DTAB mixtures in the presence of PVP, is close to ideal and is also identical to that in pure water. Received: 26 August 1999 Accepted: 6 November 1999  相似文献   

10.
以芘为荧光探针、二苯酮为猝灭剂,用稳态荧光探针法测定了新型Gemini表面活性剂的临界胶团浓度(CMC)、胶团聚集数(Nagg)及胶团微极性.研究了Gemini表面活性剂结构和氯化钠浓度对CMC、Nagg、胶团微极性的影响.结果表明,新型Gemini表面活性剂的CMC比常规表面活性剂的CMC低1—2个数量级.当疏水基碳原子数增加时,CMC依次降低,Nagg增大,胶团微极性减小.当氯化钠浓度增大时,Nagg增大,胶团微极性减小.  相似文献   

11.
The mixed micelle formation of binary cationic 14-s-14 gemini with conventional single chain surfactants was studied by conductivity measurements.The critical micelle concentration(cmc) and the degree of counterion binding values(g) of the binary systems were determined.The results were analyzed by applying regular solution theory(RST) to calculate micellar compositions(X),activity coefficients(f1,f2),and the interaction parameters(β).The synergistic interactions of all the investigated cationic gemini+conventional surfactant combinations were found to be dependent upon the length of hydrophobic spacer of the gemini surfactant.The excess Gibbs free energy of mixing was evaluated,and it indicated relatively more stable mixed micelles for the binary combinations.  相似文献   

12.
Micellization behavior of the twin-tailed surfactants can be modulated by the addition of various modifiers. Ionic liquids (ILs) are one of them and are documented here. The beauty of these environmentally benign neoteric molecules lies in their structural versatility. Here, we have investigated the effect of three ILs: 1-butyl-3-methylimidazolium bromide ([C4mim][Br]), 1-hexyl-3-methylimidazolium bromide ([C6mim][Br]), and 1-octyl-3-methylimidazolium bromide ([C8mim][Br]) on the aggregation and surface adsorption behavior of cationic gemini surfactant, bis(hexadecyldimethyl ammonium)propane dibromide (16-3-16) through experimentally measured electrical conductivities, surface tensions, and by spectral methods (UV-vis absorbance and fluorescence measurements). The main focus of the study is to observe the effect of added ILs on the critical micelle concentration (cmc), various surface parameters, aggregation number, and size of the aggregates of gemini surfactant. The results show that the more hydrophobic ILs, that is, [C6mim][Br] and [C8mim][Br] behave as electrolyte at lower concentration and cosurfactant at higher concentration, whereas moderately hydrophobic IL [C4mim][Br] acts as an electrolyte at all concentration ranges studied. The modulating effects of ILs were also compared with conventional electrolyte (NaBr) at similar conditions.  相似文献   

13.
The mixed micellization and interfacial behavior of pyridinium gemini surfactants, 1,1'-(1,1'-(ethane-1,2-diylbis-(sulfanediyl))bis(alkane-2,1-diyl))dipyridinium bromide, i.e., [12-(S-2-S)-12], [14-(S-2-S)-14], [16-(S-2-S)-16] with a phenothiazine tranquilizer drug, promethazine hydrochloride (PMT), has been investigated by conductivity, surface tension and steady state fluorescence measurements. Different spectroscopic techniques like fluorescence, UV-visible and NMR were also employed to understand the nature of interactions between the pyridinium gemini surfactants and PMT. The various micellar, interfacial and associated thermodynamic parameters for different mole fractions of PMT-pyridinium gemini surfactant mixtures have been evaluated. Synergism was observed in the mixed micelle as well as the monolayer formed by these mixtures. The fluorescence quenching experiment indicates that the interactions between PMT and surfactants are hydrophobic in nature. The UV-visible measurements reveal the distinct formation of a drug-surfactant complex. The detailed mechanism for the type of interactions was further studied by NMR titrations which show cation-π interactions between PMT and pyridinium gemini surfactant molecules.  相似文献   

14.
The micellization of the binary mixed surfactants comprising of the Gemini surfactant N,N′-bis(dimethyldodecyl)-1,2-ethanediammonium dibromide and 1-dodecyl-3-methylimidazolium bromide has been studied by measurements of density. The apparent molar volumes were calculated for various surfactant concentrations and used to determine the critical micelle concentrations of the mixed surfactants at various compositions. An attractive effect was suggested by negative deviations of the experimental CMC values from the ideal ones. The Margules equation was applied to evaluate the micelle compositions, the activity coefficients of both components, and the excess molar Gibbs free energies of the mixed micelles. The stability of mixed micelles was shown to be enhanced as compared to those formed by single surfactants from the negative values of the excess Gibbs free energy. The comparison of the results obtained from the volumetric and ITC measurements indicated a reasonable good accordance with each other and confirmed the reliability of both methods for investigation on the properties of the mixed micelles.  相似文献   

15.
In the present study, we have investigated the self-association, mixed micellization, and thermodynamic studies of a cationic gemini (dimeric) surfactant, hexanediyl-1,6-bis(dimethylcetylammonium bromide (16-6-16)) and a cationic conventional (monomeric) surfactant, cetyltrimethylammonium bromide (CTAB). The critical micelle concentration (CMC) of pure (16-6-16 and CTAB) and mixed (16-6-16+CTAB) surfactants was measured by electrical conductivity, dye solubilization, and surface tension measurements. The surface properties (viz., C20 (the surfactant concentration required to reduce the surface tension by 20 mN/m), ΠCMC (the surface pressure at the CMC), Γmax (maximum surface excess concentration at the air/water interface), Amin (the minimum area per surfactant molecule at the air/water interface), etc.) of micellar (16-6-16 or CTAB) and mixed micellar (16-6-16+CTAB) surfactant systems were evaluated. The thermodynamic parameters of the micellar (16-6-16 and CTAB) and mixed micellar (16-6-16+CTAB) surfactant systems were also evaluated.  相似文献   

16.

Micellization behavior of cationic monomeric surfactants, hexadecyltrimethylammonium bromide (CTAB), cetylpyridinium bromide (CPB), cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB), and dimeric (gemini) cationic surfactant pentamethylene‐1, 5‐bis(hexadecyldimethylammonium bromide) with formula C16H33(CH3)2N+(CH2)5N+(CH3)2C16H33 · 2Br?, abbreviated as 16‐5‐16, in mixed states (binary) have been studied by conductivity. The micellar compositions, activities of the components, and their mutual interactions have been estimated from Rubingh's theory. The mixtures show nonideal behavior with favorable interactions.  相似文献   

17.
Cationic surfactants N,N,N-trimethyl-10-(4-nitrophenoxy)decylammonium bromide (N10TAB) and N,N,N',N'-tetramethyl-N,N'-bis[10-(4-nitrophenoxy)decyl]-1,6-hexanediammonium dibromide (N10-6-10N), bearing aromatic nitrophenoxy groups in the ends of their hydrophobic chains, have been synthesized, and their self-assembling properties in aqueous solutions have been studied by conductivity, isothermal titration microcalorimetry, 1H NMR spectroscopy, and dynamic light scattering. Below the critical micelle concentration, N10-6-10N can form premicelles with 2 or 3 surfactant molecules. Beyond the critical micelle concentration, the two surfactants have strong self-aggregation ability and can form micelles of rather small size and with small aggregation numbers N, which are 30 +/- 3 for N10TAB and 20 +/- 2 for N10-6-10N, respectively. Also, the variations in 1H NMR signals at different surfactant concentrations provide the information on the environmental change of the surfactants upon their micellization progress. The most prominent phenomenon is the shielding effect of the aromatic groups over the protons in the aliphatic chains, implying that the nitrophenoxy groups partially insert into the micelles and face the several middle methylenes of the hydrophobic side chains.  相似文献   

18.
A family of two-headed surfactants, the disodium 4-alkyl-3-sulfonatosuccinates, has been prepared by reacting maleic anhydride with the appropriate chain-length alcohol and subsequent addition of sodium bisulfite to the corresponding monoester. The properties of the micelles formed by these compounds in aqueous solution (aggregation numbers, degrees of counterion binding, and the cmc values) have been investigated as a function of temperature and surfactant chain length using viscosity, density, and conductance measurements. The critical micelle concentrations (cmc's) and the aggregation numbers appear to indicate that, in agreement with the earlier literature on other two-headed surfactants systems, these amphiphiles have higher cmc and lower aggregation numbers when compared to single-headed surfactants of comparable chain length. In addition, viscosity B coefficients and the thermodynamic parameters of activation of viscous flow have been determined. These results are interpreted in terms of the structure-making or -breaking properties of the surfactant amphiphiles below the cmc region. Finally, the thermodynamic properties of micelle formation have been estimated from the dependence of the cmc on the absolute temperature according to the charged pseudo-phase separation model of micelle formation. All these results are discussed in terms of how the addition of the second charged surfactant headgroup alters the micellar and solution properties of two-headed surfactants vs. their single-headed counterparts.  相似文献   

19.
The critical micelle concentration (CMC) has been determined for the gemini surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium bromide)12-s-12,2Br?1 by means of electricity conductivity measurements. For the same number of carbon atoms in the hydrophobic chain per hydrophilic head group, geminis have CMC values well below those of conventional single-chain cationic surfactants. The CMC of 12-3-12 reduces with the addition of n-alcohol except ethanol and with the increase of n-alcohol chain length as well as increase of concentration of n-butanol and sodium chloride. Steady-state fluorescence quenching technology has been employed to study the aggregation number of micelle, which increases with increase in the length of n-alcohol. The Kraft temperature measurements also indicate that the stability of solid surfactant hydrate decreases along with the improvement of concentration of n-butanol and sodium chloride.  相似文献   

20.
The micellar behaviour of similar hydrophobic chain length conventional (cetyltrimethyl ammonium bromide, CTAB; cetyl pyridinium chloride, CPC; cetyldimethylbenzyl ammonium chloride, C16BCl) and gemini surfactant (16-2-16) in water and polar non-aqueous solvents has been investigated in the temperature range 288.15–318.15 K with the help of conductivity measurements. The method proposed by Carpena et al. has been used to analyse the conductivity–concentration to determine the micellization parameters using critical micelle concentration (CMC) and degree of counter-ion dissociation (α) of the micelle. It shows much better performance than the conventional methods and the effect of experimental errors on the evaluation of the micellization parameters has been shown to be minimal by using this procedure. It was observed that the micellization tendency of the surfactant decreases in the presence of solvents. Thermodynamic parameters were also evaluated from the temperature dependence of the CMC values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号