首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This work compares and evaluates viscosity data obtained on similar fluids by two widely accepted high shear techniques. Both the jet and concentric cylinder viscometers are useful high shear methods. The major limitation of the jet viscometer is an inability to distinguish quantitatively between energy losses in laminar flow and those due to capillary geometry and experimental conditions. For example, the jet viscometer gives minima in viscosity-shear rate correlations which are difficult to treat. These minima are not found in concentric cylinder viscometer data for the same and similar fluids. The apparent viscosity increase at high shear in the jet may be due to factors other thanReynold's turbulence, as previously supposed. This effect may be due to molecular relaxation phenomena in certain cases. The jet viscometer might thus be used to evaluate molecular relaxation and/or other phenomena contributing to this effect.For a variety of systems, the concentric cylinder viscometer gives significantly smaller temporary viscosity losses due to shear than do the jet viscometer data. These comparisons are made using the maximum jet shear rate at the capillary wall. The differences are, of course, larger if average shear rates are used to compare the data. It is concluded that the jet viscometer results tend to be erroneous. This is possibly due to capillary end effects or problems with kinetic energy corrections.  相似文献   

2.
The utilization of hydrogen is gaining increasing attention due to its high heating value and environmen-tally friendly combustion product.The supercritical wat...  相似文献   

3.
为了探究埋头弹火炮所用的玻璃纤维增强型(GFR)复合材料药筒在高温高压瞬态冲击条件下的结构强度,分别开展了圆筒静态整体拉伸和动态高温高压冲击实验,从拉伸/瞬态超高压破坏试样断口部分截取断口样品,在扫描电子显微镜下观察断口形貌,得到GFR复合材料在两种不同受力情况下的失效模式。结果表明:室温整体单轴拉伸断裂时,GFR复合材料的断面与轴线夹角接近45°, 失效模式为环氧树脂基体破坏和纤维拔出;在高压瞬态冲击作用下,试样主要失效模式为纤维的脆性断裂,同时由于火药燃烧产生的高温燃气使部分环氧树脂基体碳化,纤维与基体界面结合力降低,少数纤维熔融或软化附着在断口上,部分软化的纤维因瞬态超高压被拉细。  相似文献   

4.
Dilute suspension of particles with same density and size develops clusters when settle at high Reynolds number(≥250).It is due to particles entrapment in the w...  相似文献   

5.
Experimental Techniques - In the last years, the wind industry has increased in a large scale. A wind turbine out of service leeds to high costs due to both maintenance and repair costs and the...  相似文献   

6.
针对中国特色的半刚性基层沥青路面,在广韶高速公路瓮城段进行为期一个月高温期的现场温度观测。运用三维有限元方法,结合现场实测温度,分析了半刚性沥青路面结构的最大拉应力、最大剪应力和最大路表弯沉在荷载和荷载耦合作用下的变化情况。结果表明,随着路面深度增加,温度波动的幅度逐渐减小;路面内的最高温度相对大气和路表温度滞后约1小时;沥青路面内部温度高于表面温度;大气、路表和路面内部温度变化基本同步,温度波峰与波谷的出现频率相同;在温度和荷载综合作用下,路表以下2cm深度范围内易出现因拉应力不足造成的开裂破坏;路表以下10cm深度范围内,较易出现剪切破坏;高温温度场的存在虽不会明显增大路面结构各层的拉应力与剪应力,但会明显增大路表弯沉,故易产生车辙破坏。  相似文献   

7.
Graphene is a competitive electrode material for supercapacitors due to its unique two-dimensional structure,large surface area,high conductivity,and good physi...  相似文献   

8.
The submerged inlet is an attractive configuration for advanced helicopters due to its high stealth performance and low external drag.In this paper,a submerged ...  相似文献   

9.
高地应力条件下的巷道崩落爆破参数   总被引:3,自引:0,他引:3  
戴俊  钱七虎 《爆炸与冲击》2007,27(3):272-278
以柱装药爆破漏斗理论为基础,对高地应力巷道崩落爆破标准漏斗形成进行研究,导出了高应力条件下形成崩落爆破标准漏斗的判断准则,进而导出了相应条件的巷道崩落爆破参数计算式。结果表明,地应力的作用要求对巷道崩落爆破的现有参数计算进行修正,而且地应力越高,崩落爆破的最小抵抗线和炮孔间距减小越多,单位耗药量和循环炮孔数量增加越多。最后指出,选用较高爆速的炸药可减缓崩落爆破参数随地应力增大而改变的速率。  相似文献   

10.
伍小平 《实验力学》2010,25(5):491-508
近40年来,由于激光的出现,使光力学测试的理论和技术有了快速的发展,测试技术丰富多彩。特别是数字图像处理硬件和软件的飞速发展,使光力学方法成为了常规的技术,在基础研究的探索和解决工程实际问题中,都发挥了重要的作用。本文对该阶段的主要进展,做一个简要的回顾。上世纪60年代激光的问世推动了光测实验力学的发展;70~80年代光测方法的发展着重于信息获得方面;90年代以后,数字图像处理技术的迅速发展,在信息提取的能力方面有了质的变化。如今,光测实验力学不仅灵敏度大大提高,而且已发展为常规的测试手段和现场测试技术。  相似文献   

11.
Shrestha  R.  Cai  J.  Naraghi  M.  de Boer  M. P. 《Experimental Mechanics》2020,60(6):763-773
Experimental Mechanics - While there is great interest in polymer nanofibers due to their high strength, methods to measure their time-temperature superposition (TTS) curves are lacking. The...  相似文献   

12.
采用高能炸药透过钢板对锡样品开展爆轰加载实验,并通过数值模拟对实验结果进行验证,分析不同间隙对爆轰加载过程的影响。研究结果表明:亚毫米级别的样品间隙能对实验结果会产生显著影响;一方面锡样品与钢层间的间隙将导致冲击波在间隙表面发生强反射,反射稀疏波在钢层与炸药界面再次反射形成较强的后续压缩冲击波,进而导致锡样品的加载压力显著升高,另一方面,金属层间与炸药间的间隙将导致加载压力降低;相较于金属层间与炸药间的间隙,锡样品与钢层间的间隙对加载影响更严重,并且随着间隙尺寸变化,两种情况中间隙影响的变化趋势也有所差异。  相似文献   

13.
Carbon dots (CDs) have attracted more interest in tumor theranostics,but they suffer from the rapid renal clearance due to small size and high hydrophilicity.To...  相似文献   

14.
岩体的卸载破坏和加载破坏有本质区别,岩爆是高地应力区地下工程开挖卸载产生的地质灾害现象.针对处于高静水压力状态下的岩体,采用松香模型实验研究径向瞬时卸载引起动力破碎型“岩爆”;通过分析动力破碎过程中的速度峰值、卸载波作用时间特征,推导了.应变能及剥落(破碎)块体动能及速度计算公式.结果表明:文中给出的速度峰值和动能计算方法是可行的,剥落(破碎)块体动能仅占可恢复应变能很小部分,大部分能量最终以不同形式耗散掉;距自由面不同距离处的卸载波作用时间大致相等,远大于卸载波的扰动时间;破碎波阵面在介质中推进速度大致为匀速,也远小于卸载波扰动速度.  相似文献   

15.
Babaie  Zahra  Bahrami  Dariush  Bayareh  Morteza 《Meccanica》2022,57(1):73-86
Meccanica - Passive micromixers, due to their relatively high mixing efficiency and simple fabrication, have wide applications in biological, medical, and chemical processes. Serpentine and...  相似文献   

16.
Coincident site-lattice (CSL) and random grain boundaries (GBs) effects on intergranular and transgranular crack propagation paths in ordered intermetallics that are subjected to high rates of strain are investigated. A three dimensional dislocation density based multiple slip crystalline formulation and computational scheme are used for a detailed understanding and accurate characterization of interrelated deformation and failure mechanisms that can occur due to the generation, trapping, interaction, and annihilation of mobile and immobile dislocation densities that are generally associated with finite strain high strain-rate plasticity in L12 ordered intermetallics. Results from this study indicate that intergranular crack growth is along the GBs, normal to the stress-axis, and is due to the dominance of normal stresses in the crack-tip region. Transgranular crack growth is along slip-planes, and is due to the dominance of shear stresses in the crack-tip region.  相似文献   

17.
路桂华  赵曼  岳强 《爆炸与冲击》2017,37(3):520-527
弹性波与压电材料接触界面的相互作用问题是工程应用中常见而复杂的问题,入射波足够强会引起界面出现滑移和分离,但滑移和分离的边界未知,边界条件具有非线性特性。通过Fourier分析,将混合边值问题的求解转化为非线性代数方程,利用软件通过迭代修正的方法进行了求解;给出3种状态边界的求解,分析入射波强度、外加应力及电场对界面状态的影响,并对高频谐波的特性进行分析,通过实例对理论推导进行验证,结果显示:入射波强度、外加荷载和电场的大小及摩擦因数均会影响到界面,通过改变这些条件可以控制界面状态,另外检测高频谐波的信号也可以反映界面状态。  相似文献   

18.
Luo  Gangjie  Li  Li  Fang  Qihong  Li  Jia  Tian  Yuanyuan  Liu  Yong  Liu  Bin  Peng  Jing  Liaw  P. K. 《应用数学和力学(英文版)》2021,42(8):1109-1122
High entropy alloys(HEAs) attract remarkable attention due to the excellent mechanical performance. However, the origins of their high strength and toughness compared with those of the traditional alloys are still hardly revealed. Here, using a microstructure-based constitutive model and molecular dynamics(MD) simulation, we investigate the unique mechanical behavior and microstructure evolution of FeCoCrNiCu HEAs during the indentation. Due to the interaction between the dislocation and solution,the high dislocation density in FeCoCrNiCu leads to strong work hardening. Plentiful slip systems are stimulated, leading to the good plasticity of FeCoCrNiCu. The plastic deformation of FeCoCrNiCu is basically affected by the motion of dislocation loops. The prismatic dislocation loops inside FeCoCrNiCu are formed by the dislocations with the Burgers vectors of a/6[■] and a/6[■], which interact with each other, and then emit along the ■slip direction. In addition, the mechanical properties of FeCoCrNiCu HEA can be predicted by constructing the microstructure-based constitutive model, which is identified according to the evolution of the dislocation density and the stress-strain curve.Strong dislocation strengthening and remarkable lattice distortion strengthening occur in the deformation process of FeCoCrNiCu, and improve the strength. Therefore, the origins of high strength and high toughness in FeCoCrNiCu HEAs come from lattice distortion strengthening and the more activable slip systems compared with Cu. These results accelerate the discovery of HEAs with excellent mechanical properties, and provide a valuable reference for the industrial application of HEAs.  相似文献   

19.
Characteristics of high Mach number compressible vortex ring generated at the open end of a short driver section shock tube is studied experimentally using high-speed laser sheet-based flow visualization. The formation mechanism and the evolution of counter rotating vortex ring (CRVR) formed ahead of the primary vortex ring are studied in details for shock Mach number (M) 1.7, with different driver section lengths. It has been observed that the strength of the embedded shock, which appears at high M, increases with time due to the flow expansion in the generating jet. Strength of the embedded shock also varies with radius; it is strong at smaller radii and weak at larger radii; hence, it creates a velocity gradient ahead of the embedded shock. At critical Mach number (M c ≥ 1.6), this shear layer rolls up and forms a counter rotating vortex ring due to Biot-Savart induction of the vortex sheet. For larger driver section lengths, the embedded shock and the resultant shear layer persists for a longer time, resulting in the formation of multiple CRVRs due to Kelvin–Helmholtz type instability of the vortex sheet. CRVRs roll over the periphery of the primary vortex ring; they move upstream due to their self-induced velocity and induced velocity imparted by primary ring, and interact with the trailing jet. Formation of these vortices depends strongly upon the embedded shock strength and the length of the generating jet. Primary ring diameter increases rapidly during the formation and the evolution of CRVR due to induced velocity imparted on the primary ring by CRVR. Induced velocity of CRVR also affects the translational velocity of the primary ring considerably.  相似文献   

20.
The blade tip region in gas turbine encounters high thermal loads due to temperature difference and hence efforts for high durability and safe operations are essential. Improved and robust methods of cooling are required to downgrade heat transfer rate to turbine blades. The blade tip regions, which are exposed to high gas flow, suffers high local thermal load which are due to external tip leakage. Jet impingement, pin cooling etc. are techniques used for cooling blades. A more usual way is to use serpentine passage with 180-degree turn. In this study, numerical simulation of heat transfer distribution of a two-pass square channel with rib turbulators and bleed holes were done. Periodical rib turbulators and bleed holes were used in the channel. The ribs arrangement were 60 degree V rib, 60 degree inverted V ribs, combination of 60 degree V rib at inlet and 60 inverted V rib at outlet section and combination of Inverted V at inlet and V rib at the outlet. The results were numerically computed using Fluent with Reynolds number of 12,500 and 28,500. Turbulence models used for computations were k-ω-SST and RSM. Temperature based and shear stress based techniques were used for heat transfer distribution prediction. The results for 60 degree V rib, 60 degree inverted V ribs were compared with the experimental results for validation of the results obtained. Detailed distribution shows distinctive peaks in heat transfer around bleed holes and rib turbulator. Comparisons of the overall performance of the models with different orientation of rib turbulator are presented. It is found that due to the combination of 60 degree inverted V rib in inlet and 60 V rib in outlet with bleed holes provides better heat treatment. It is suggested that the use of rib turbulator with bleed holes provides suitable for augmenting blade cooling to achieve an optimal balance between thermal and mechanical design requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号