首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1D calcium and titanium composite nanorods synthesized were applied as electrorheological (ER) active materials with extremely high static yield stresses, i.e., giant ER effect. The yield stress of this giant ER fluid was analyzed using a new universal yield stress scaling equation in the form of the modified Bessel functions with two different limiting behaviors in a low and high electric field region. The universal yield stress equation collapsed the yield stress data onto a single curve.  相似文献   

2.
Comments on the recent report of electrorheological (ER) properties of an organic modified titanium dioxide with considerably high yield stress are given based on the analysis of its yield stress data as a function of applied electric field strengths. Using our previously reported universal yield stress equation and critical electric field strengths deduced, it is found that we can collapse their data onto a single curve.  相似文献   

3.
The comments on the recent results on electrorheological (ER) property of rare earth modified amorphous barium strontium titanate gel based ER fluid are given via analysis of its dynamic yield stress data as a function of applied electric field strengths. Using our previously reported universal yield stress equation, we obtained the critical electric field strength and collapsed their data onto a single curve.  相似文献   

4.
5.
We have studied the effect of an external direct current (DC) electric field ( approximately 1 kV/mm) on the rheological properties of colloidal suspensions consisting of aggregates of laponite particles in a silicone oil. Microscopy observations show that, under application of an electric field greater than a triggering electric field Ec approximately 0.6 kV/mm, laponite aggregates assemble into chain- and/or columnlike structures in the oil. Without an applied electric field, the steady-state shear behavior of such suspensions is Newtonian-like. Under application of an electric field larger than Ec, it changes dramatically as a result of the changes in the microstructure: a significant yield stress is measured, and under continuous shear the fluid is shear-thinning. The rheological properties, in particular the dynamic and static shear stress, were studied as a function of particle volume fraction for various strengths (including null) of the applied electric field. The flow curves at constant shear rate can be scaled with respect to both the particle fraction and electric field strength onto a master curve. This scaling is consistent with simple scaling arguments. The shape of the master curve accounts for the system's complexity; it approaches a standard power-law model at high Mason numbers. Both dynamic and static yield stresses are observed to depend on the particle fraction Phi and electric field E as PhibetaEalpha, with alpha approximately 1.85 and beta approximately 1 and 1.70 for the dynamic and static yield stresses, respectively. The yield stress was also determined as the critical stress at which there occurs a bifurcation in the rheological behavior of suspensions that are submitted to a constant shear stress; a scaling law with alpha approximately 1.84 and beta approximately 1.70 was obtained. The effectiveness of the latter technique confirms that such electrorheological (ER) fluids can be studied in the framework of thixotropic fluids. The method is very reproducible; we suggest that it could be used routinely for studying ER fluids. The measured overall yield stress behavior of the suspensions may be explained in terms of standard conduction models for electrorheological systems. Interesting prospects include using such systems for guided self-assembly of clay nanoparticles.  相似文献   

6.
The static yield stress of an electro-rheological fluid (starch/gas-oil and mesophase-carbon/gas-oil, abbreviated as ERF), congealed by an electric field, has been examined by means of a tensile tester with parallel electrodes. Static yield stress showed different behavior from dynamic yield stress reported by many investigators: thus static yield stress is proportional to applied field strength, but not to the square of it, as is dynamic yield stress. The adhesive force between the particles was not Coulomb's force but Maxwell's force. The theory of McLean and Ikazakiet al.using the Johnsen–Rahbeck effect on the adhesive force of the dust pile on an electrode of the electro-static precipitator was applied and the deduced equation actually explained the phenomena. It was clarified experimentally and theoretically that the physical properties of the ERF particles had no effect on the adhesive force of the pearl chains of a congealed ERF; on the contrary, the volumetric concentration did affect it.  相似文献   

7.
A three-temperature theory of ion diffusion, and related generalized Einstein relations (GER) connecting diffusion and mobility, are shown to remain valid even in the presence of resonant charge transfer (RCT) which strongly distorts the ion velocity distribution function electric fields. Extreme models of RCT for which exact solutions are known, are used for testing. A previous semi-empirical parametrization scheme for the GER is refined to include the case of RCT and compared with the calculations of Sinha, Lin, and Bardsley for the system He+ in He. Good results are obtained for both the diffusion coefficients and the anisotropic ion temperatures as a function of electric field strength.  相似文献   

8.
Polyaniline (PANI) was synthesized via oxidative coupling polymerization in acid conditions and de-doped in solution of ammonia. The electrorheological (ER) properties of the PANI/silicone oil suspensions were investigated in oscillatory shear as functions of electric field strength, particle concentration, and host fluid viscosity. Consistent with literature, the PANI ER fluid exhibits viscoelastic behavior under the applied electric field and the ER response is strongly enhanced with increasing electric field strength and particle concentration. The dynamic moduli, G' and G' increase dramatically, by 5 orders of magnitude, as the electric field strength is increased to 2 kV/mm. A viscoelastic liquid to solid transition occurs at a critical electric field strength, in the range Ec = 50-200 V/mm, whose value depends on particle concentration and host fluid viscosity. The fibrillar structure formed in the presence of the applied field has a static yield strength tau(y), whose value scales with electric field strength as tau(y) approximately E(1.88). When the field is switched off a residual structure remains, whose yield stress increases with the strength of the applied field and particle concentration. When the applied stress exceeds the yield stress of the residual structure, fast, fully reversible switching of the ER response is obtained.  相似文献   

9.
Biocompatible chitosan particle suspensions in host oils of corn, soybean, and silicone were prepared and their electrorheological (ER) characteristics were examined under the imposition of electric fields. The effects of the weight concentration of particulate chitosan and the strength of the applied electric field on ER response in the various chitosan particle suspensions were investigated via measurements of rheological properties including flow curve, shear viscosity, and yield stress. The yield stresses of the three different chitosan–oil systems showed different values of slope in the electric field, but all data were found to fit well with our previously proposed universal scaling function.  相似文献   

10.
Conventional electrorheological (ER) fluids consist of electrically polarizable particles dispersed in an inert insulating liquid. They are characterized by a development of a yield stress upon application of an external electric field. They resemble Bingham fluids with yield stress value depending on electric field. A viscosity increase in the presence of an electric field has been also found in homogeneous solutions of liquid crystalline polymers with no yield stress observed. In this study these two types of fluids and combined dispersions of the solid particles in the liquid crystalline matrix were investigated. A lyotropic liquid crystalline polymer—poly(n‐hexyl isocyanate) (PHIC)—dissolved in xylene was chosen as the active matrix. The dispersed solid phase was comprised of two kinds of polymers: pyrolyzed polyacrylonitryle (PAN) showing electron conductivity, and PAN doped with two salts (KSCN, NaSCN), resulting in ionic conductivity. The rheological measurements under an electric field were performed. The pristine xylene solution of PHIC was characterized first as well as the 15% m/m dispersions of PAN powders in silicone oil. Then the dispersions in the liquid crystalline matrix were investigated showing a strong ER effect whose magnitude was considerably enhanced in comparison to both ER active components measured separately. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
A Schrödinger equation equivalent to the Langevin equation of ion motion in ICR cells is presented. A wave function for the scattering states has been found as the solution to the equation of ion motion under the influence of electric and magnetic fields perturbed by a scattering potential. Applying the minimized wave packet as a wave function describing coherent states, the scattering amplitudes are determined explicitly. The connection between the collision cross section and the scattering amplitudes is found by making use of the incoming and outgoing particle flux density. The collision cross section found in this way is converted from quantum theory to classical physics. The collision cross section, which plays an essential role in the determination of rate constants can be determined by the aid of ICR experimental data if the contribution of an alternating electric field is taken into account.  相似文献   

12.
Based on the analytic derivatives formalism for the spin-free normalized elimination of the small component method, a new computational scheme for the calculation of the electric field gradient at the atomic nuclei was developed and presented. The new computational scheme was tested by the calculation of the electric field gradient at the mercury nucleus in a series of Hg-containing inorganic and organometallic compounds. The benchmark calculations demonstrate that the new formalism is capable of reproducing experimental and theoretical reference data with high accuracy. The method developed can be routinely applied to the calculation of large and very large molecules and holds considerable promise for the interpretation of the experimental data of biologically relevant compounds containing heavy elements.  相似文献   

13.
14.
 A semiclassical approach, previously proposed in matter and momentum transport phenomena, has been employed to deal with the electrorheological effect. The vibrational Helmholtz free energy of a solidlike medium, consisting of phononic and dielectric contributions, has been developed in terms of Debye, optical and characteristic system frequencies and constrained to a stationary condition with respect to mass-density variations. It turns out that application of an electric field results in the creation of bound energy states, which can be related to the solid fraction and the yield stress through a phenomenological equation. Application to rheological data, from polyaniline particles and chlorinated paraffin in silicon oil, silica spheres in corn oil and numerical simulations, is presented. Received: 11 December 2000 Accepted: 18 August 2001  相似文献   

15.
This paper is devoted to the steady-state rheological properties of two new kinds of ferrofluids. One of these was constituted by CoNi nanospheres of 24 nm in diameter, whereas the other by CoNi nanofibers of 56 nm in length and 6.6 nm in width. These ferrofluids were subjected to shear rate ramps under the presence of magnetic fields of different intensity, and the corresponding shear stress values were measured. From the obtained rheograms (shear stress vs shear rate curves) the values of both the static and the dynamic yield stresses were obtained as a function of the magnetic field. The magnetoviscous effect was also obtained as a function of both the shear rate and the magnetic field. The experimental results demonstrate that upon magnetic field application these new ferrofluids develop yield stresses and magnetoviscous effects much greater than those of conventional ferrofluids, based on nanospheres of approximately 10 nm in diameter. Besides some expected differences, such as the stronger magnetorheological effect in the case of ferrofluids based on nanofibers, some intriguing differences are found between the rheological behaviors of nanofiber ferrofluids and nanosphere ferrofluid. First, upon field application the rheograms of nanofiber ferrofluids present N-shaped dependence of the shear stress on the shear rate. The decreasing part of the rheograms takes place at low shear rate. These regions of negative differential viscosity, and therefore, unstable flow is not observed in the case of nanosphere ferrofluids. The second intriguing difference concerns the curvature of the yield stress vs magnetic field curves. This curvature is negative in the case of nanosphere ferrofluid, giving rise to saturation of the yield stress at medium field, as expected. However, in the case of nanofiber ferrofluid this curvature is positive, which means a faster increase of the yield stress with the magnetic field the higher the magnitude of the latter. These interesting differences may be due to the existence of strong interparticle solid friction in the case of nanofiber ferrofluids. Finally, theoretical models for the static yield stress of the ferrofluids were developed. These models consider that upon field application the ferrofluid nanoparticles are condensed in drops of dense phase. These drops tend to be aligned along the field direction, opposing the flow of the ferrofluids and being responsible for the static quasielastic deformation and the yield-stress phenomena. By considering the existence of interparticle dry friction only in the case of nanofiber ferrofluids, the developed models predicted quite well not only the magnitude of the static yield stress but also the differences in curvature of the yield stress vs magnetic field curves.  相似文献   

16.
A mathematical model of DNA separation by capillary electrophoresis in entangled polymer solution is presented. The mechanism is modeled as a DNA molecule moving through transient pores formed in polymer solutions and colliding with blobs of polymer molecules encountered during migration. By taking account of the average retardation time (t(c)) of DNA-blob collision and calculating the total collision number (N(c)), a quantitative mathematical equation was reported, leading to predictions for the DNA mobility as a function of the experimental conditions like the size of DNA, the polymer concentration and the electric field strength. For DNA fragments in frequent size range, the initial experimental data agree well with the model. The DNA shape function (f(E)) was suggested and then discussed by the experimental data. The relationship between f(E) and electric field strength E was empirically estimated. Then, the average retardation time t(c) was obtained as about (2 approximately 3)x10(-6)s in linear polyacrylamide (LPA) and hydroxyethylcellulose (HEC) solution.  相似文献   

17.
The spatial relaxation of electrons to homogeneous states under the action of space-independent electric fields is investigated in helium, krypton, and N2 plasmas for various electric field strengths. These investigations are based on a new method recently developed for solving the one-dimensional inhomogeneous electron Boltzmann equation in weakly ionized, collision-dominated plasmas. Elastic as well as conservative inelastic collisions of electrons with gas atoms have been included in the kinetic treatment. The spatial relaxation is caused by an imposed direct disturbance in the velocity distribution of the electrons on a spatial boundary. A pronounced dependence of the relaxation structure and the resultant relaxation length on the atomic data of the electron collision processes in different gases has been found. Furthermore the relaxation process sensitively depends on the electric field strength in the region of medium field values.  相似文献   

18.
沸石电流变液材料的研究   总被引:1,自引:0,他引:1  
系统地研究了沸石的由离子类型、数目、骨架的孔道大小和结构特性对沸石电流变液性能的影响. 证实了阳离子在电场中的迁移所引起的晶粒极化是Y,A和M等沸石电流变特性的基础,指出了较大的孔径和具有足够多易迁移的阳离子是该类沸石具有较好电流变性的的前提.根据NaZSM-5沸石在高电场中与其它沸石表现不同,具有屈服应力大而漏电流小的特点,提出了沸石晶粒极化还可能存在的另一种新的晶格变形机理.  相似文献   

19.
The decay of sensitizer phosphorescence in a rigid solution modified by the electronic energy transfer by the mechanism of dipole-dipole interaction mixing with the dipole-quadrupole interaction is proposed. The rate constant for the transfer process transfer process as (equation).where (equation). Calculations are made of the yield and the decay time of the sensitizer phosphorescence as functions of the activator concentration and the mixing coefficient of dipole-dipole interaction with dipole-quadrupole interaction. It is hoped that the proposed mechanism will provide a sound, quantitative basis for analyzing experimental data in a triplet-singlet energy transfer process. As a demonstration, results indicate that about 9% of the electronic energy radiationlessly transferred from triplet triphenylene-d12 to singlet Rhodamine B is induced by the electric dipole-quadrupole coulombic interaction.  相似文献   

20.
电场和温度对含水电流变液性能的影响   总被引:2,自引:0,他引:2  
测试了聚甲基丙烯酸锂(Li-PMAA)粒子含水量(Q)不同时的Li-PMAA/硅油电流变(ER)液的静态屈服应力(τs)和电流密度(J)随电场强度(E)和温度(T)的变化,同时分别用幂函数和Ar-rheniu方程拟合了τs、J与E、T的关系,并计算了与τs、J有关的两种活化能(Ea、Eb).发现ER液在低电场下,τs∝E2;而在高电场下,τs∝Eb,b与Q有关,随Q增加而增加.当Q较小时,ER液的τs、J随温度的升高而增加,且Ea=0.15eV,Eb=0.70eV.作者认为该体系的ER效应主要是由粒子中的可移动离子如Li+在电场作用下产生粒子内迁移所致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号