首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With cellulose acetate (CA) as a base material, a novel environmentally friendly carboxylate waterborne cellulose acetate (CWCA) emulsion was synthesized via the method of self-emulsification. Taking advantage of acrylic acid, hydroxyethyl acrylate as a modifier, and isophorone diisocyanate as a bridging agent, the molecular structural design of CWCA dispersion was completed successfully, and the structure was confirmed by Fourier transform infrared spectroscopy (FTIR). In this work, the particle size and distribution of the stable CWCA dispersion with solid content of 22.6% are 115.6 and 0.158 nm, respectively. It was found that the microstructure of emulsion particles is a core-shell structure containing a hydrophilic carboxylate group as the shell and hydrophobic cellulose acetate molecular as the core. In addition, the hydrophobic behavior of CWCA film is presented as a contact angle of 109.9°. Furthermore, CWCA film provided a higher thermal decomposition temperature of 345.42 °C than that of CA film at the largest mass loss rate.  相似文献   

2.
Spin-coated films of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) have been characterized by ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The films were spin-coated onto silicon wafers, a polar surface. Mean thickness values were determined by means of ellipsometry and AFM as a function of polymer concentration in solutions prepared either in acetone or in ethyl acetate (EA), both are good solvents for the cellulose esters. The results were discussed in the light of solvent evaporation rate and interaction energy between substrate and solvent. The effects of annealing and type of cellulose ester on film thickness, film morphology, surface roughness and surface wettability were also investigated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Bio-based continuous fibers were prepared by melt spinning cellulose acetate butyrate (CAB), cellulose nanocrystals (CNC) and triethyl citrate. A CNC organo-gel dispersion technique was used and the prepared materials (2 and 10 wt% CNC) were melt spun using a twin-screw micro-compounder and drawn to a ratio of 1.5. The microscopy studies showed that the addition of CNC in CAB resulted in defect-free and smooth fiber surfaces. An addition of 10 wt% CNC enhanced the storage modulus and increased the tensile strength and Young’s modulus. Fiber drawing improved the mechanical properties further. In addition, a micromechanical model of the composite material was used to estimate the stiffness and showed that theoretical values were exceeded for the lower concentration of CNC but not reached for the higher concentration. In conclusion, this dispersion technique combined with melt spinning can be used to produce all-cellulose nanocomposites fibers and that both the increase in CNC volume fraction and the fiber drawing increased the mechanical performance.  相似文献   

4.
All aromatic polyimides bearing diarylsulfide linkages in the main chain were prepared either by condensation of a sulfur containing dianhydride with an aromatic diamine or the condensation of a sulfur containing aromatic diamine with a dianhydride. Phenylation with diphenyl iodonium salts was then used to convert the diarylsulfide groups to triarylsulfonium salts. The resulting photosensitive polyimides were shown to undergo main chain cleavage during photolysis using UV irradiation. These new polyimides are candidates for positive working, high temperature photoresist materials.  相似文献   

5.
An enantioselective membrane was prepared using cellulose acetate butyrate as a membrane material. The flux and permselective properties of membrane using 50% ethanol solution of (R,S)-trans-stilbene oxide as feed solution were studied. The top surface and cross-section morphology of the resulting membrane were examined by scanning electron microscopy. The resolution of over 92% enantiomeric excess was achieved when the enantioselective membrane was prepared with 15 wt % cellulose acetate butyrate and 30 wt % N,N-dimethylformamide in the casting solution of acetone, 10 °C temperature of water bath for the gelation of the membrane, and the operating pressure and the feed concentration of the trans-stilbene oxide were 3 kgf/cm2 and 5.2 mmol/L, respectively. Since the cellulose acetate butyrate contained a large amount of asymmetric carbons on the backbone structure, it was possible to form helical structure, this was considered to be the reason for the enantioselectivity of the membrane.  相似文献   

6.
Cellulose nanocrystals (CNC) prepared from eucalyptus cellulose CNCs were modified by the reaction with methyl adipoyl chloride, CNCm, or with a mixture of acetic and sulfuric acid, CNCa. The CNC were either dispersed at 0.1 wt% in the pure solvents ethyl acetate (EA), tetrahydrofuran (THF) and dimethylformamide (DMF) or in cellulose acetate butyrate (CAB) solutions prepared in these solvents at 0.9 wt%. The colloidal behavior of these dispersions was systematically investigated using a phase separation analyzer LUMiReader®. The mechanical properties and morphological features of the films resulting from the mixtures of CAB and CNC were determined by dynamic mechanical analysis, optical microscopy and atomic force microscopy, respectively. Regardless the functional group attached to the surface of CNC, the best colloidal stability was observed for dispersions prepared in CAB/DMF solution. Higher degree of substitution of modified CNCs favored the colloidal stability in EA and THF. Composite films prepared from CAB/DMF solutions were more homogeneous and presented better mechanical performance than those prepared in CAB/EA or CAB/THF. The mechanical performance of composites and neat CAB prepared from DMF was CAB/CNCs > CAB/CNCm > CAB/CNCa > CAB, indicating that the modification weakens the percolation process, which is mediated by H bonding.  相似文献   

7.
Summary Metal chelates of secondary cellulose acetate (SCA) with chromium(III), copper(II), cobalt(II), nickel(II) and UO 2 2+ were prepared and characterized by elemental analyses, magnetic moments and spectral studies. SCA acts as a uninegatively charged bidentate ligand and reacts with the metal ion via the oxygen atom of the secondary unacetylated hydroxyl group in the glucose subunit of the polymer, plus the oxygen atom of the vicinal ester group, to form a five-membered chelate ring.  相似文献   

8.
Cellulose acetate (CA) membranes are used in ultrafiltration applications, although they show low chemical, mechanical and thermal resistance. In order to prepare membranes with improved properties, modification of cellulose acetate with polyethelene glycol (PEG 600) has been attempted. In this study, CA has been mixed with PEG 600 as an additive in a polar solvent. The effects of CA composition and additive concentration given by a mixture design of experiments on membrane compaction, pure water flux, water content and membrane hydraulic resistance have been studied and discussed. The efficiency of protein separation by the developed CA membranes have been quantified using model proteins such as pepsin, egg albumin (EA) and bovine serum albumin (BSA). The thermal stability of the developed membranes prepared with PEG 600 additive has also been investigated using thermogravimetric analysis and differential scanning calorimetry.  相似文献   

9.
Grafting of 1,2-O-isopropylidene-α-D -xylofuranose to commercial cellulose diacetate has been accomplished by using a boron trifluoride catalyst. The reaction proceeds quickly at 25 and 40°C, resulting in degrees of molar substitution (MS) of 0.37 and 0.34, respectively. If monomer and catalyst are added over an extended period of time to maintain low concentrations, MS values as high as 0.89 and 0.85 are obtained at 25 and 40°C, respectively. Major side reactions are depolymerization of the cellulose acetate backbone and grafted D -xylose and the homopolymerization of the monomer. These side reactions may be minimized by conducting the reaction at 40°C for a short time or by adding monomer and catalyst over an extended period of time. Grafting has also been accomplished by using D -xylose derivatives with various reactive groups at the anomeric carbon atom. The grafted material of MS greater than 0.7 is insoluble in acetone and after deacetylation is soluble in water under alkaline, neutral and acidic conditions. Oxalic acid hydrolysis of the deacetylated material indicates that most of the grafted D -xylose units are in the furanose form. Methylation and hydrolysis of the methylated material shows that 75% of the D -xylose residues are terminal units and indicates the presence of many singly grafted D -xylose residues and a few di-and trisaccharide grafts.  相似文献   

10.
11.
The transport of hydrochloric acid (0.001-0.1 M) and sodium dodecyl sulfate (0.001-0.1 M) has been measured through a membrane consisting of a blend of cellulose acetate butyrate and cellulose acetate hydrogen phthalate. The cellulose derivative blend is suggested to suffer an alteration in the degree of hydrophobicity when in equilibrium with sodium dodecyl sulfate (SDS) through hemimicelle formation. An increase in surface hydrophobicity of the blend when in equilibrium with SDS solution was observed by fluorescence measurements using the vibronic bands of the probe pyrene, as well as by water desorption kinetics; a decrease of the effective diffusion coefficients from 1.2 × 10−11 m2 s−1 in the absence of SDS to approximately 2 × 10−13 m2 s−1 in its presence was found. The value obtained for the mutual diffusion coefficient of HCl in the concentration range 0.001-0.1 M (D=4.2×10−14 m2 s−1) shows also that the membrane presents hydrophobic features. The flux of SDS in the blend membrane at different pH values shows two distinct permeation rates depending on the cmc. However, from the calculation of permeability coefficients at SDS concentrations below the cmc a clear decrease in P is found, whilst, at concentrations above the cmc the permeability coefficients are nearly constant, only showing a slightly increase. The diffusion coefficients of SDS in the blend increase over the whole SDS concentration range analysed and show an effective diffusion coefficient 2-3 orders of magnitude below the diffusion coefficients of SDS in aqueous solutions. This fact suggests that the only diffusing species are SDS unimers. The presence of HCl in the SDS bulk solution has the effect of increasing the permeability and diffusion coefficients. Mutual analysis of permeation and diffusion coefficients and sorption isotherms shows that, on decreasing the pH, the interactions between SDS and the polymer network decrease. This is also reflected in a clear decrease of the hydrophobic interactions between the diffusing and polymeric species, provoked by a decrease in the unimer-unimer association.  相似文献   

12.
cis-1,4-Polybutadiene and polypentenamer having pendant functional groups such as formyl, aldoxime, hydroxymethyl, or cinnamoyloxymethyl groups have been prepared, and some of their properties were investigated in terms of structural effect on physical properties of these polymers. cis-1, 4-Polybutadiene and polypentenamer having a different content of formyl group were prepared by the hydroformylation reaction with rhodium catalyst under mild conditions. The pendant formyl group was reduced to a hydroxymethyl group by using various reducing agents such as sodium borohydride or sodium trimethoxyborohydride which were effective to avoid a crosslinking reaction among the formyl groups. Glass transition temperature of polypentenamer having hydroxymethyl groups increased with increasing the content of the hydroxymethyl groups in the polymer. Cinnamoyl group was introduced into the polypentenamer having hydroxymethyl groups by reacting with cinnamoyl chloride so as to prepare a photosensitive rubber. The relationships between the photosensitivity of the cinnamoylated polypentenamer and the mobility of polymer main chains have been elucidated. A linear relationship between the photodimerization rate constant and the difference between ultraviolet (UV) irradiation temperature and the glass transition temperature of the polymer was found. It has become apparent that the photosensitivity of cinnamoylated polypentenamer can be estimated by the glass transition temperature of the original polymer, UV irradiation temperature, activation energy of the dimerization, and γ, which is a coefficient of the relationship between the photosensitive group concentration and the glass transition temperature of the polymer.  相似文献   

13.
We successfully synthesized hydroxypropylcellulose (HPC) and methylcellulose (MC) in high yields from cellulose in 6 wt % NaOH/4 wt % urea aqueous solutions at 25 °C. The cellulose derivatives were characterized with NMR, size exclusion chromatography/laser light scattering, gas chromatography (GC), ultraviolet, and solubility measurements in different solvents. According to the results of solution 13C NMR and GC, the individual degree of substitution (DS; i.e., the average number of substituted hydroxyl groups in the monomer unit) at C‐2 hydroxyl groups was slightly higher than the DS values at C‐3 and C‐6 hydroxyl groups for HPC and MC. In comparison with traditional systems, NaOH/urea aqueous solutions were proved to be a stable and more homogeneous reaction medium for preparing cellulose ether with a more uniform microstructure. The low limits for the average number of moles of the substituent groups per monomer unit and the DS value of water‐soluble HPC were 1.03 and 0.85, respectively. MC (DS = 1.48) had good solubility in both water and organic solvents, and the precipitation point occurred at about 67 °C for a 2% (w/v) aqueous solution. In this way, we could provide a simple, pollution‐free, and homogeneous aqueous solution system for synthesizing cellulose ethers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5911–5920, 2004  相似文献   

14.
Composites of cellulose acetate and polysiloxane were prepared using 3-isocyanatepropyltriethoxysilane, as a coupling agent. The structure, the thermal and dynamic-mechanical behaviors, and the morphology of the obtained composites were investigated. The composites showed phase separation which was confirmed by the presence of siloxane micro- and nano-domains dispersed in the cellulose acetate matrix, with good interfacial adhesion between the phases. The results demonstrated that the incorporation of a polysiloxane phase on a cellulose acetate matrix caused a decrease in the glass transition temperature, storage modulus and hardness. The proposed methodology was seen to be convenient for the preparation of cellulose acetate/polysiloxane composites with useful properties.  相似文献   

15.
16.
孙东平 《高分子科学》2014,32(4):439-448
Bacterial cellulose produced by Acetobacter xylinum has been reacted with propyleneoxide to synthesize hydroxypropyl cellulose(HPC) under different reaction conditions while diluted by toluene. The effects of mass ratio of bacterial cellulose to propyleneoxide, dilutability of toluene, reaction temperature(T) and time(t) were investigated by series of experiments. The degree of substitution(DS), hydroxypropyl content(A) and yield(η) were compared. The optimized product exhibited cold-water solubility and hot-water gelatinization in aqueous medium. Further study was carried out with FTIR, TGA, XRD, SEM and 13C-NMR for characterization. The water/air contact angle measurement reveals that it is a good hydrophobic material with good mechanical properties.  相似文献   

17.
A series of cellulose-phenol-formaldehyde (LCPF) and cellulose-urea-formaldehyde (CUF) resins were produced using banana waste. Detailed structure and quantitative information was provided by FT-IR and mass spectroscopy. The main interests were the ability to use banana waste as a source of cellulose in the condensation reaction. Functionality of CPF and structure of CUF were investigated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Samples of oxidized cellulose (OC) with various carboxyl contents and degrees of crystallinity were obtained by the oxidation of native and mercerized cellulose with a solution of nitrogen(IV) oxide in CCl4. A detailed characterization of these OC samples was performed. The effect of oxidation conditions (concentration of N2O4 in the solution and oxidation time) and starting cellulose material on OC characteristics (carboxyl, carbonyl and nitrogen content, degree of crystallinity and polymerization, surface area and swelling, and acidic properties) was investigated. Reactivity in the oxidation process was higher in mercerized cellulose than in native cellulose. The action of dilute solutions (10–15%) of N2O4 did not affect the degree of crystallinity of cellulose samples. Under these conditions, the oxidation took place mainly in amorphous regions and on the surface of crystallites. Oxidation in a concentrated (40%) N2O4 solution led to the destruction of crystallites, which increased the surface area and swelling of cellulose in water. The surface area and the swelling of OC samples increased with a decrease in the index of crystallinity. The acidic properties of OC were shown to increase with an increase of swelling in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4785–4791, 2004  相似文献   

19.
The phase behavior of a partially miscible blend of poly(ethylene oxide) (PEO) and cellulose acetate butyrate (CAB) and the crystalline microstructure of PEO in the blend were studied with differential scanning calorimetry (DSC), optical microscopy, and synchrotron small‐angle X‐ray scattering (SAXS) methods. PEO/CAB showed a lower critical solution temperature (LCST) of 168 °C at the critical composition of PEO of 60 wt %. All blend compositions showed a single glass‐transition temperature (Tg) when they were prepared at temperatures lower than the LCST. However, with increasing CAB content, Tg of the blend changed abruptly at 70 wt % CAB; that is, a cusp existed. Below 70 wt % CAB, the change in Tg with blend composition was predicted by the Brau–Kovacs equation, whereas this change was predicted by the Fox equation at higher CAB contents. A gradual but small depression of the melting point of PEO in the blend with an increasing amount of CAB suggested that the PEO/CAB blends exhibited a weak intermolecular interaction. From DSC and SAXS experiments, it was found that amorphous CAB was incorporated into the interlamellar region of PEO for blends with less than 20 wt % CAB, whereas it was segregated to exist in the interfibrillar region in PEO for other blends with larger amounts of CAB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1673–1681, 2002  相似文献   

20.
Recent advances between 1985 and early 1993 in the following topics of the characterization of molecular structure and molecular properties of cellulose and its derivates (CD) made in the authors' laboratories are briefly reviewed: (1) A theoretical basis of the assignment of carbonyl carbon peaks of 13C NMR spectra on cellulose acetate (CA) was given, especially when the total degree of substitution <<f>> is below 3. (2) Molar fractions of 8 kinds of unsubstituted and partially or fully substituted anhydroglucopyranose units were successfully determined for CA and sodium cellulose sulfate (NaCS). (3) The sequence distribution of substituted and unsubstituted anhydroglucopyranose units along a water–soluble CA chain was evaluated. (4) C6-substituted (i.e., 6-O-acetyl) CA and C2- and C6-substituted CA were synthesized, and the full assignment of the 13C NMR spetrum of the former was given and a new method for evaluating the degree of substitution at C6 position was proposed. (5) By destructing the intramolecular hydrogen bonding, cellulose becomes soluble in aq. sodium hydroxide. The specific supermolecular structure of aq. sodium hydroxide, dissolving mechanism, dissolved state and molecular parameters of cellulose in aq. sodium hydroxide were discussed. (6) The solubility behavior of CA with a wide range of total degree of substitution in solvents including water, acetone/water and acetone is controlled by the distribution of substitution and the supermolecular structure. (7) The existence of O3-H … O'5 intramolecular hydrogen bonds in a water-in soluble cellulose derivative with hydrophilic substituent (NaCEC) was confirmed by CP/MAS 13C NMR and deuteration IR method. At a relatively low degree of substitution the solubility of the derivative in water or aqueous alkali was mainly governed by considerable destruction of the intramolecular hydrogen bonds. (8) The persistence length q, evaluated directly by small-angle X-ray scattering (SAXS) on CA with different total degree of substitution <<f>> ranging from 0,8 to 2,9 confirmed definitely the conclusion drawn before by Kamide and Saito on the molecular rigidity of CD, especially the effect of <<f>> on q. (9) C6-substituted CA shows different solubility towards dimethylacetamide and water at 20°C, as compared with C2- and C3-subsituted CA and C2-, C3- and C6- substituted CA, whose <<f>> is ca. 0,6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号