首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrathin films, bcc Fe(001) on Ag(001), fcc Fe(001) on Cu(001) and Fe/Ni(001) bilayers on Ag, were grown by molecular beam epitaxy. A wide range of surface science tools were employed to establish the quality of epitaxial growth. Ferromagnetic resonance and Brillouin light scattering were used to extract the magnetic properties. Emphasis was placed on the study of magnetic anisotropies. Large uniaxial anisotropies with easy axis perpendicular to the film surface were observed in all ultrathin structures studied. These anisotropies were particularly strong in fcc Fe and bcc Fe films. In sufficiently thin samples the saturation magnetization was oriented perpendicularly to the film surface in the absence of an applied field. It has been demonstrated that in bcc Fe films the uniaxial perpendicular anisotropy originates at the film interfaces. In situ measurements indentified the strength of the uniaxial perpendicular anisotropy constant at the Fe/vacuum, Fe/Ag and Fe/Au interfaces asK us = 0.96, 0.63, and 0.3 ergs/cm2 respectively. The surface anisotropies deduced for [bulk Fe/noble metal] interfaces are in good agreement with the values obtained from ultrathin films. Hence the perpendicular surface ansiotropies originate in the broken symmetry at abrupt interfaces. An observed decrease in the cubic anisotropy in bcc Fe ultrathin films has been explained by the presence of a weak 4th order in-plane surface anisotropy,K 1S=0.012 ergs/cm2. Fe/Ni bilayers were also investigated. Ni grew in the pure bcc structure for the first 3–6 ML and then transformed to a new structure which exhibited unique magnetic properties. Transformed ultrathin bilayers possessed large inplane 4th order anisotropies far surpassing those observed in bulk Fe and Ni. The large 4th order anisotropies originate in crystallographic defects formed during the Ni lattice transformation.  相似文献   

2.
J. J. Suñol 《哲学杂志》2013,93(20):2323-2342
Progress in the ball milling amorphization of elemental powders with the overall composition Fe40Ni40P20 ? xSix (X = 6, 10 and 14) and thermally induced crystallization of obtained alloys were characterized by differential scanning calorimetry, X-ray diffraction and transmission Mössbauer spectroscopy (TMS). Diffusion of Si into Fe and Ni alloys promotes the formation of the amorphous phase, via previous formation of (Fe, Ni) phosphides. After milling for 32–64 h, most of the powders are amorphous but bcc Fe(Si) crystallites remain (about 5% in volume). TMS results indicate that homogenization of the amorphous phase occurs by interdiffusion of Ni and Fe in Fe(Si,P)-rich and Ni(Si,P)-rich zones respectively. Annealing induces structural relaxation of stresses induced by milling, growth of bcc Fe(Si) crystallites, precipitation of bcc Fe(Si) and fcc Ni–Fe, and minor phases of Ni-rich silicides and (Fe, Ni) phosphides. The main ferromagnetic phase is bcc Fe(Si) for Fe40Ni40P10Si10 powders obtained after milling for 32 h. However, it is fcc Fe–Ni for the same alloy after milling for 64 h. In the later powders, as well as for alloys with x = 6 and 14 milled for 32 h, the fcc Fe–Ni shows the Invar magnetic collapse.  相似文献   

3.
By constrained spin-density functional calculations we estimate the relative role of the longitudinal and transversal fluctuations of the magnetic moments in the series of 3d metals (bcc Fe, hcp and fcc Co, and fcc Ni) for weak excitations from the ferromagnetic ground state. It is shown that the importance of longitudinal fluctuations strongly varies from relatively small in bcc Fe to large in fcc Ni. This means that a consistent adiabatic treatment of the low-energy spin fluctuations should include independent longitudinal fluctuations.  相似文献   

4.
蔡军  叶亦英 《中国物理》1996,5(11):840-848
Based on Born's criteria we studied phase stability and theoretical strength of fcc crystals of copper and nickel under [100] uniaxial loading. The calculation was carried out using a simple and completely analytical embedded atom method(EAM) potential proposed by the present authors. For Cu, the calculated value of its theoretical strength (0.33×1011 dyn·cm-2) agrees well with the experimental value (0.30×1011 dyn·cm-2), while the calculated strain (9.76%) is somewhat larger than the experimental one (2.8%). For Ni, its theoretical strength and strain predicted using the EAM potential are found smaller than those predicted using a pair potential. It is worthy to note that unlike previous calculations, in which pair potentials were used and three unstressed fcc, bcc, and fct structures included (for Ni only fcc state is found stable, while for Cu both fcc and bcc states are predicted stable), in present calculations using EAM potential the [100] primary loading path passes through only two zeroes (a stable unstressed fcc structure and an unstable stress-free bcc structure) either for Cu or for Ni.  相似文献   

5.
Fe1-xPdx合金电子结构和磁性的理论研究   总被引:2,自引:0,他引:2       下载免费PDF全文
施一生 《物理学报》2003,52(4):993-998
Fe1-xPdx合金的磁性强烈地依赖于其结构以及Pd的相对含量.从第一性原理出发,用线性缀加平面波(LAPW)方法,分别计算了x=000,025,050,075,100的情况下,面心立方(fcc)和体心立方(bcc)结构的Fe1-xPdx合金的电子结构和基态磁性.随x的增大,fcc结构的Fe1-xPdx合金的磁性从铁磁性或者反铁磁性变为亚铁磁性,再从亚铁磁性变为铁磁性和顺磁性;bcc结构的Fe1-xPdx合金从铁磁性减弱到顺磁性,预言了fcc结构的Fe1-xPdx合金可能存在亚铁磁相.并较好地解 关键词: 合金 电子结构 磁性  相似文献   

6.
Ni thin films are prepared on GaAs(100) single-crystal substrates at room temperature by using an ultra-high vacuum radio-frequency magnetron sputtering system. The growth behavior and the crystallographic properties are studied by in-situ refection highenergy electron diffraction and pole-figure X-ray diffraction. In an early stage of film growth, a metastable bcc Ni(100) single-crystal film is formed on GaAs(100) substrate, where the bcc structure is stabilized through hetero-epitaxial growth. With increasing the film thickness, fcc crystals coexist with the bcc(100) crystal. High-resolution cross-sectional transmission electron microscopy shows that the film consists of a mixture of bcc and fcc crystals and that a large number of planar faults exist parallel to the fcc(111) close-packed plane. The results indicate that the bcc structure starts to transform into fcc structure through atomic displacement parallel to the bcc{110} close-packed planes.  相似文献   

7.
由于离子掺杂可有效改善ZnS薄膜的特性,故本研究以溶胶-凝胶法制备Ni_xZn_(1-x)S薄膜(x=0.00, 0.05, 0.10, 0.15),并利用XRD、PL光谱及磁性测试仪分析Ni掺杂对其磁性的影响.研究结果表明Ni掺杂量x为0.00、0.05、0.10及0.15时薄膜的饱和磁化强度随分别为6.59×10~(-6) emu/cm~3、4.61×10~(-6) emu/cm~3、3.88×10~(-6) emu/cm~3及3.52×10~(-6) emu/cm~3,即饱和磁化强度随x增加而减小. PL分析表明缺陷发光强度随x增加而减弱,能隙发光强度则随之增强,结合束缚极化子理论便知饱和磁化强度会随x增加而减小. XRD分析表示结晶品质随x增加而变好,说明薄膜中的缺陷数量会随x增加而减少,使得磁信号无法通过缺陷方式传导而导致其磁性减弱.  相似文献   

8.
Mössbauer spectra have been observed for nonequilibrium bcc and fcc Fe–Cu alloys sputter-deposited at several Ar gas pressures,P Ar. These alloys are ferromagnetic at low temperatures and show sextet spectra. The fcc alloys which are paramagnetic at 290 K show asymmetric doublet spectra, indicating no serious segregation. In the alloys deposited at highP Ar, the weak intensity ratios of the second and fifth lines of the sextet indicate a tendency of perpendicular magnetic anisotropy, while a large magnetic hyperfine field component of about 40 MA/m (500 kOe) at 4.2 K and a large quadrupole splitting component of about 0.7 mm/s at 290 K imply CuFeO2 formation. The nonequilibrium, bcc and fcc Fe–Cu, alloys are maintained below 500 K and the phase separation is detected above 550 K. X-ray photoemission spectroscopy studies of these alloys reveals individual Fe- and Cu-d bands. The concentration dependence of peak intensities and peak positions indicate that Fe and Cu electronically intermix.  相似文献   

9.
The relative stability of fee and bcc solid solutions and amorphous phase with different compositions in the Cu-Al system is studied by molecular dynamics simulations with n-body potentials. For CU1-xAlx alloys, the calculations show that the fee solid solution has the lowest energies in the composition region with x 〈 0.32 or x 〉 0.72, while the bcc solid solution has the lowest energies in the central composition range, in agreement with the ball-milling experiments that a single bcc solid solution with 0.30 〈 x 〈 0.70 is obtained. The evolution of structures in solid solutions and amorphous phase is studied by the coordination number (CN) and bond-length analysis so as to unveil the underlying physics. It is found that the energy sequence among three phases is determined by the competition in energy change originating from the bond length and CNs (or the number of bonds).  相似文献   

10.
采用分子动力学方法对不同冷速下液态金属镁(Mg)快速凝固过程中的微观结构演变进行了模拟研究.并采用能量-温度(E-T)曲线、双体分布函数、Honeycutt-Andersen键型指数法、原子团簇类型指数法(CTIM-3)以及三维可视化等方法系统地考察了凝固过程中微观结构演变与相转变过程.结果发现:在以冷速为1×10~(11)K/s的凝固过程中,亚稳态bcc相优先形成,随后大量解体,其变化规律符合Ostwald规则,系统最终形成以hcp结构为主体与fcc结构共存,中间还夹杂部分bcc结构的致密晶体结构.在1×10~(12)K/s冷速下,结晶过程呈现迟缓现象,形成bcc结构的初始温度降低,系统形成以hcp居多、与bcc和fcc三相共存的结构,且因相互竞争、相互制约而导致不易形成粗大的晶粒结构.而在1×10~(13)K/s冷速下,系统则形成以1551,1541,1431键型为主的多种非晶态基本原子团组成的非晶态结构.此外,在冷速1×10~(12)与1×10~(13)K/s之间的确存在一个形成非晶态结构的临界冷速.  相似文献   

11.
We investigate theoretically the prospects of ferromagnetism being induced by cation vacancies in nonmagnetic oxides. A single Ca vacancy V(0)(Ca) has a magnetic moment due to its open-shell structure but the ferromagnetic interaction between two vacancies extends only to four neighbors or less. To achieve magnetic percolation on a fcc lattice with such an interaction range one needs a minimum of 4.9% vacancies, or a concentration 1.8 x 10(21) cm(-3). Total-energy calculations for CaO show, however, that due to the high vacancy formation energy even under the most favorable growth conditions one can not obtain more than 0.003% or 10(18) cm(-3) vacancies at equilibrium, showing that a nonequilibrium vacancy-enhancement factor of 10(3) is needed to achieve magnetism in such systems.  相似文献   

12.
We report the observation of bcc-like crystal structures in 2-4 monolayer (ML) Fe films grown on fcc Cu(100) using scanning tunneling microscopy. The local bcc structure provides a straightforward explanation for their frequently reported outstanding magnetic properties, i.e., ferromagnetic ordering in all layers with a Curie temperature above 300 K. The nonpseudomorphic structure, which becomes pseudomorphic above 4 ML film thickness, is unexpected in terms of conventional rules of thin film growth and stresses the importance of finite thickness effects in ferromagnetic ultrathin films.  相似文献   

13.
A. K. Mishra  C. Bansal 《Pramana》2005,65(5):847-854
Starting with Cu0.65Zn0.35 with an e/a ratio of 1.35 we studied the phase formation in nanophase (Cu0.65Zn0.35)1?x Fe x alloys in the concentration range 0.1 ≤x ≤0.7 to see the effect of altering the electron concentration. The evolution of bcc phase from the fcc phase as a function of Fe concentration was investigated by Mössbauer spectroscopy and X-ray diffraction. The grain size, lattice parameters, and average hyperfine magnetic field distributions were estimated for the nanophase alloys. The fcc phase was observed to persist up to 40 atomic per cent Fe substitutions, a mixed (fcc + bcc) phase region up to 70 atomic per cent Fe and bcc phase beyond 70 atomic per cent Fe. The magnetic state of the alloys changed from nonmagnetic forx ≤0.3 to magnetically ordered state at room temperature forx ≤0.33, which lies in the fcc phase region. The fcc phase alloys of Fe with non-magnetic metals have very low magnetic transition temperatures. However, in this system the room temperature state is unusually magnetic  相似文献   

14.
Inelastic collision rates for ultracold 85Rb atoms in the F = 2, m(f) = -2 state have been measured as a function of magnetic field. At 250 gauss (G), the two- and three-body loss rates were measured to be K2 = (1.87+/-0.95+/-0.19)x10(-14) cm(3)/s and K3 = (4.24(+0. 70)(-0.29)+/-0.85)x10(-25) cm(6)/s, respectively. As the magnetic field is decreased from 250 G towards a Feshbach resonance at 155 G, the inelastic rates decrease to a minimum and then increase dramatically, peaking at the Feshbach resonance. Both two- and three-body losses are important, and individual contributions have been compared with theory.  相似文献   

15.
FeNi nanowires were fabricated by ac and pulse electrodeposition into the alumina template matrix. The effects of continuous ac electrodeposition as well as pulse features on the structure and magnetic properties of the nanowire arrays were studied. The microstructures and magnetic properties of the Fe x Ni1−x nanowires are seen to be independent of the deposition frequency and off-time between the pulses. The ac electrodeposited Ni nanowires were not formed at more than 400  Hz deposition frequency, while the Fe x Ni1−x nanowires, containing a small amount of Fe, formed in the all frequencies. For x less than 50% the coercivity slowly increases but over 50% Fe added to the FeNi alloy increases the coercivity with a higher rate and maximum coercivity was seen for the Fe0.97Ni0.03. The Fe and Fe x Ni1−x nanowires containing less than 30 at.% Ni was seen to have a bcc structures with (110) preferential direction while Fe x Ni1−x nanowires with more than 30 at.% Ni showed (110) bcc (Fe) and/or (111) bcc (FeNi) plus (111) fcc (Ni). A preferential (111) fcc structure was obtained for the Ni nanowires.  相似文献   

16.
A brief review is provided which assesses the current status of the study of metastable phases of magnetic 3-d metals as epitaxial films on single crystal substrates. Three systems which have the largest literature are discussed in detail: fcc γ-Fe on Cu, fcc β-Co on Cu and bcc Co on GaAs.  相似文献   

17.
FeNi alloy nanoparticles with controllable sizes were attached on the multiwalled carbon nanotubes by adjusting the atomic ratio of metal to carbon in the mixed solution of nitrate with Fe:Ni=1:1 (atomic ratio) via wet chemistry. Transmission electron microscopy (TEM) and high-resolution TEM indicated that quasi-spherical FeNi alloy nanoparticles with sizes in the range 12-25 nm are obtained. FeNi alloy composed of major face center cubic (fcc) and minor body center cubic (bcc) structures, which is proved by the X-ray powder diffraction (XRD). Magnetization measured by vibrating sample magnetometer demonstrated that both the coercive force and saturation magnetizations decrease as the size of the FeNi alloy nanoparticles decreased. The chemical method is promising for fabricating FeNi alloy nanoparticles attached on carbon nanotubes for magnetic storage and ultra high-density magnetic recording applications.  相似文献   

18.
Rapidly quenched (Co95Fe5)1-xAlx ribbons are investigated by X‐ray diffraction, magnetization, and Mössbauer effect measurements. A single fcc phase is obtained for all ribbons x ? 10 at.%. The lattice constant increases linearly with x and is discussed in connection with magnetic moment. The influence of Al substitution on both magnetization and Fe‐atom hyperfine field (H) is studied. At 296 K, the magnetization decreases linearly while H drops nonlinearly as x increases. Al substitution leads to substantial differences in iron hyperfine fields in bcc and fcc systems. Fe moment is perturbed differently by Al substitution in fcc (Co95Fe5)1-xAlx and bcc Fe–Al systems.  相似文献   

19.
 用能带论LMTO方法,在对bcc、fcc锂的能带结构进行自洽计算的基础上,对两种结构的物态方程做了计算。压缩比1~12、压力至103 GPa的计算结果分别与实验(σ<3)及TF统计模型进行了比较。通过对总能的计算,研究了晶体结构的稳定性。说明在我们所研究的压力范围内,fcc结构比bcc结构更稳定。  相似文献   

20.
This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7, 27.5~GPa for bcc Fe, and 48.1, 34.6, 51.2~GPa for fcc Fe in the [001], [110] and [111] directions, respectively. For bcc Fe, the [001] direction is shown to be the weakest direction due to the occurrence of a phase transition from ferromagnetic bcc Fe to high spin ferromagnetic fcc Fe. For fcc Fe, the [110] direction is the weakest direction due to the formation of an instable saddle-point `bct structure' in the tensile process. Furthermore, it demonstrates that a magnetic instability will occur under a tensile strain of 14%, characterized by the transition of ferromagnetic bcc Fe to paramagnetic fcc Fe. The results provide a good reference to understand the intrinsic mechanical properties of Fe as a potential structural material in the nuclear fusion Tokamak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号