首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work electronic and optoelectronic properties of InGaN/GaN nanocolumn quantum disk LEDs have been studied with the multiscale simulation tool tiberCAD. Calculations have been performed with an atomistic tight-binding model. Results shows that emission energies have a minor dependence on the nanocolumn dimension while In concentration in the active region is a critical parameter.  相似文献   

2.
In this study, an InGaN lighting-emitting diode(LED) containing GaN/AlGaN/GaN triangular barriers is proposed and investigated numerically. The simulation results of output performance, carrier concentration, and radiative recombination rate indicate that the proposed LED has a higher output power and an internal quantum efficiency, and a lower efficiency droop than the LED containing conventional GaN or AlGaN barriers. These improvements mainly arise from the modified energy bands, which is evidenced by analyzing the LED energy band diagram and electrostatic field near the active region.The modified energy bands effectively improve carrier injection and confinement, which significantly reduces electron leakage and increases the rate of radiative recombination in the quantum wells.  相似文献   

3.
The TiberCAD simulation tool for calculation of optical and electronic properties of nanostructured devices has been used to study spontaneous emission of a GaN quantum dot embedded in an AlGaN nanocolumn. Macroscopic calculations provide corrections to the quantum calculation, showing the role of strain and the polarization field in spectra and the electron and hole states arrangement.  相似文献   

4.
傅爱兵  郝明瑞  杨耀  沈文忠  刘惠春 《中国物理 B》2013,22(2):26803-026803
We propose an optically pumped nonpolar GaN/AlGaN quantum well (QW) active region design for terahertz (THz) lasing in the wavelength range of 30 μm~ 40 μm and operating at room temperature. The fast longitudinal optical (LO) phonon scattering in GaN/AlGaN QWs is used to depopulate the lower laser state, and more importantly, the large LO phonon energy is utilized to reduce the thermal population of the lasing states at high temperatures. The influences of temperature and pump intensity on gain and electron densities are investigated. Based on our simulations, we predict that with a sufficiently high pump intensity, a room temperature operated THz laser using a nonpolar GaN/AlGaN structure is realizable.  相似文献   

5.
郭海君  段宝兴  袁嵩  谢慎隆  杨银堂 《物理学报》2017,66(16):167301-167301
为了优化传统Al GaN/GaN高电子迁移率晶体管(high electron mobility transistors,HEMTs)器件的表面电场,提高击穿电压,本文提出了一种具有部分本征GaN帽层的新型Al GaN/GaN HEMTs器件结构.新型结构通过在Al GaN势垒层顶部、栅电极到漏电极的漂移区之间引入部分本征GaN帽层,由于本征GaN帽层和Al GaN势垒层界面处的极化效应,降低了沟道二维电子气(two dimensional electron gas,2DEG)的浓度,形成了栅边缘低浓度2DEG区域,使得沟道2DEG浓度分区,由均匀分布变为阶梯分布.通过调制沟道2DEG的浓度分布,从而调制了Al GaN/GaN HEMTs器件的表面电场.利用电场调制效应,产生了新的电场峰,且有效降低了栅边缘的高峰电场,Al GaN/GaN HEMTs器件的表面电场分布更加均匀.利用ISE-TCAD软件仿真分析得出:通过设计一定厚度和长度的本征GaN帽层,Al GaN/GaN HEMTs器件的击穿电压从传统结构的427 V提高到新型结构的960 V.由于沟道2DEG浓度减小,沟道电阻增加,使得新型Al GaN/GaN HEMTs器件的最大输出电流减小了9.2%,截止频率几乎保持不变,而最大振荡频率提高了12%.  相似文献   

6.
Ni/Au Schottky contacts on AlN/GaN and AlGaN/GaN heterostructures are fabricated.Based on the measured current–voltage and capacitance–voltage curves,the electrical characteristics of AlN/GaN Schottky diode,such as Schottky barrier height,turn-on voltage,reverse breakdown voltage,ideal factor,and the current-transport mechanism,are analyzed and then compared with those of an AlGaN/GaN diode by self-consistently solving Schrdinger’s and Poisson’s equations.It is found that the dislocation-governed tunneling is dominant for both AlN/GaN and AlGaN/GaN Schottky diodes.However,more dislocation defects and a thinner barrier layer for AlN/GaN heterostructure results in a larger tunneling probability,and causes a larger leakage current and lower reverse breakdown voltage,even though the Schottky barrier height of AlN/GaN Schottky diode is calculated to be higher that of an AlGaN/GaN diode.  相似文献   

7.
研究了表面预处理对GaN同质外延的影响,获得了高电子迁移率AlGaN/GaN异质结材料.通过NH_3/H_2混合气体与H_2交替通入反应室的方法对GaN模板和GaN半绝缘衬底进行高温预处理.研究结果表明,NH_3/H_2能够抑制GaN的分解,避免粗糙表面,但不利于去除表面的杂质,黄光带峰相对强度较高;H_2促进GaN分解,随时间延长GaN分解加剧,导致模板表面粗糙不平,AlGaN/GaN HEMT材料二维电子气迁移率降低.采用NH_3/H_2混合气体与H_2交替气氛模式处理模板或衬底表面,能够清洁表面,去除表面杂质,获得平滑的生长表面和外延材料表面,有利于提高AlGaN/GaN HEMT材料电学性能.在GaN衬底上外延AlGaN/GaN HEMT材料,2DEG迁移率达到2113 cm~2/V·s,电学性能良好.  相似文献   

8.
设计并制作了结构尺寸为毫米量级的AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器,采用数值分析的方法分析了器件传感区域长度与宽度比值及待测物调控二维电子气(2DEG)距离与感测信号之间的关系,给出了结构尺寸为毫米量级的AlGaN/GaN HEMT生物传感器的设计依据,以不同浓度的前列腺特异性抗原(PSA)为待测物,对制作的AlGaN/GaN HEMT生物传感器进行了初步测量,测试结果表明,在50 mV的电压下,毫米量级的AlGaN/GaN HEMT生物传感器的对PSA的探测极限低于0.1 pg/ml.实验表明毫米量级的AlGaN/GaN HEMT生物传感器具有灵敏度高,易于集成等优点,具备良好的应用前景.  相似文献   

9.
A strain-compensated InGaN quantum well(QW) active region employing a tensile AlGaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode(LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LEDs based on a stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate.It is found that the optimal performance is achieved when the Al composition of the strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW.The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW,which can provide a better carrier confinement and effectively reduce leakage current.  相似文献   

10.
Double heterostructures AlGaN/GaN/AlGaN grown by hydride vapor phase epitaxy and designed for use as light emitting diodes for 360 nm wavelength were patterned by shallow nanoholes and injected with Ag/SiO2 or Al nanoparticles. A 1.8 times increase in the photoluminescence and microcathodoluminescence signal from the GaN active region was observed for 100 nm diameter Al nanoparticles, the efficiency decreased compared to the reference planar samples for small Al nanoparticles of 30–40 nm diameter, and a moderate increase of 1.2 times was detected for Ag/SiO2 nanoparticles. The observed phenomena are explained by the GaN emitter coupling with localized surface plasmons produced by metallic nanoparticles. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
Rectangular Schottky drain AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional AlGaN/AlN/GaN HFETs as control were both fabricated with same size. It was found there is a significant difference between Schottky drain AlGaN/AlN/GaN HFETs and the control group both in drain series resistance and in two-dimensional electron gas (2DEG) electron mobility in the gate-drain channel. We attribute this to the different influence of Ohmic drain contacts and Schottky drain contacts on the strained AlGaN barrier layer. For conventional AlGaN/AlN/GaN HFETs, annealing drain Ohmic contacts gives rise to a strain variation in the AlGaN barrier layer between the gate contacts and the drain contacts, and results in strong polarization Coulomb field scattering in this region. In Schottky drain AlGaN/AlN/GaN HFETs, the strain in the AlGaN barrier layer is distributed more regularly.  相似文献   

12.
Strain-compensated InGaN quantum well (QW) active region employing tensile AlGaN barrier is analyzed. Its spectral stability and efficiency droop for dual-blue light-emitting diode (LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LED based on stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate. It is found that the optimal performance is achieved when the Al composition of strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW. The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW that can provide a better carrier confinement and effectively reduce leakage current.  相似文献   

13.
段宝兴  杨银堂 《物理学报》2014,63(5):57302-057302
为了优化AlGaN/GaN HEMTs器件表面电场,提高击穿电压,本文首次提出了一种新型阶梯AlGaN/GaN HEMTs结构.新结构利用AlGaN/GaN异质结形成的2DEG浓度随外延AlGaN层厚度降低而减小的规律,通过减薄靠近栅边缘外延的AlGaN层,使沟道2DEG浓度分区,形成栅边缘低浓度2DEG区,低的2DEG使阶梯AlGaN交界出现新的电场峰,新电场峰的出现有效降低了栅边缘的高峰电场,优化了AlGaN/GaN HEMTs器件的表面电场分布,使器件击穿电压从传统结构的446 V,提高到新结构的640 V.为了获得与实际测试结果一致的击穿曲线,本文在GaN缓冲层中设定了一定浓度的受主型缺陷,通过仿真分析验证了国际上外延GaN缓冲层时掺入受主型离子的原因,并通过仿真分析获得了与实际测试结果一致的击穿曲线.  相似文献   

14.
The aluminium gallium nitride (AlGaN) barrier thickness dependent trapping characteristic of AlGaN/GaN heterostructure is investigated in detail by frequency dependent conductance measurements. The conductance measurementsin the depletion region biases (−4.8 V to −3.2 V) shows that the Al0.3Ga0.7N(18 nm)/GaN structure suffers from both the surface (the metal/AlGaN interface of the gate region) and interface (the AlGaN/GaN interface of the channel region) trapping states, whereas the AlGaN/GaN structure with a thicker AlGaN barrier (25 nm) layer suffers from only interface (the channel region of AlGaN/GaN) trap energy states in the bias region (−6 V to −4.2). The two extracted time constants of the trap levels are (2.6–4.59) μs (surface) and (113.4–33.8) μs (interface) for the Al0.3Ga0.7N(18 nm)/GaN structure in the depletion region of biases (−4.8 V to −3.2 V), whereas the Al0.3Ga0.7N (25 nm)/GaN structure yields only interface trap states with time constants of (86.8–33.3) μs in the voltage bias range of −6.0 V to −4.2 V. The extracted surface trapping time constants are found to be very muchless in the Al0.3Ga0.7N(18 nm)/GaN heterostructure compared to that of the interface trap states. The higher electric field formation across the AlGaN barrier causes de-trapping of the surface trapped electron through a tunnelling process for the Al0.3Ga0.7N(18 nm)/GaN structure, and hence the time constants of the surface trap are less.  相似文献   

15.
The characteristics of a blue light-emitting diode (LED) with an AlInN/GaN superlattice (SL) electron-blocking layer (EBL) are analyzed numerically. The carrier concentrations in the quantum wells, energy band diagrams, electrostatic fields, and internal quantum efficiency are investigated. The results suggest that the LED with an AlInN/GaN SL EBL has better hole injection efficiency, lower electron leakage, and smaller electrostatic fields in the active region than the LED with a conventional rectangular AlGaN EBL or a AlGaN/ GaN SL EBL. The results also indicate that the efficiency droop is markedly improved when an AlInN/GaN SL EBL is used.  相似文献   

16.
Raman scattering from an AlGaN/GaN heterostructure was performed in the temperature range from 77 to 773 K. The first- and second-order Raman scattering of the A1 longitudinal-optical phonon–plasmon coupled mode from an AlGaN/GaN interface as well as the Raman scattering from the GaN layer were observed. All the modes downshift, and their intensities weaken with increasing temperature. The free-carrier concentration estimated by the frequency of the coupled mode from an AlGaN/GaN interface is 7.5 times as high as that of n-AlGaN, indicating mass free-carrier transfer from the AlGaN barrier to the GaN well. Moreover, the temperature dependence of the phonon frequency is well described by an empirical formula. PACS 78.30.Fs; 63.20.Ls; 61.82.Fk; 68.60.Dv; 81.15.Gh  相似文献   

17.
周利刚  沈文忠 《物理学报》2009,58(10):6863-6872
研究了GaN/AlGaN异质结构中的双带(中、远)红外探测及光子频率上转换特性.通过光致发光光谱确认GaN/AlGaN探测器结构中AlGaN本征层的Al组分,讨论了不同Al组分GaN/AlGaN异质结的导带带阶界面功函数差.在拟合单周期GaN/AlGaN探测器中红外和远红外波段响应谱的基础上,研究多周期GaN/AlGaN探测器与GaN/AlGaN发光二极管集成结构的中红外和远红外光子频率上转换效率与GaN发射层厚度、AlGaN本征层厚度、紫光光子出射效率、内量子效率、空间频率和发射层掺杂浓度间的关系,优化 关键词: 双带红外探测 光子频率上转换 响应谱 GaN/AlGaN  相似文献   

18.
唐文昕  郝荣晖  陈扶  于国浩  张宝顺 《物理学报》2018,67(19):198501-198501
GaN材料具有优异的电学特性,如大的禁带宽度(3.4 eV)、高击穿场强(3.3 MV/cm)和高电子迁移率(600 cm~2/(V·s)). AlGaN/GaN异质结由于压电极化和自发极化效应,产生高密度(1×10~(13)cm~(-2))和高迁移率(2000 cm~2/(V·s))的二维电子气(2DEG),在未来的功率系统中, AlGaN/GaN二极管具有极大的应用前景.二极管的开启电压和击穿电压是影响其损耗和功率处理能力的关键参数,本文提出了一种新型的具有高阻盖帽层(high-resistance-cap-layer, HRCL)的p-GaN混合阳极AlGaN/GaN二极管来优化其开启电压和击穿特性.在p-GaN/AlGaN/GaN材料结构基础上,通过自对准的氢等离子体处理技术,在沟道区域形成高阻盖帽层改善电场分布,提高击穿电压,同时在阳极区域保留p-GaN结构,用于耗尽下方的二维电子气,调控开启电压.制备的p-GaN混合阳极(p-GaN HRCL)二极管在阴阳极间距Lac为10μm时,击穿电压大于1 kV,开启电压+1.2 V.实验结果表明, p-GaN混合阳极和高阻GaN盖帽层的引入,有效改善AlGaN/GaN肖特基势垒二极管电学性能.  相似文献   

19.
段小玲  张进成  肖明  赵一  宁静  郝跃 《中国物理 B》2016,25(8):87304-087304
A novel groove-type channel enhancement-mode AlGaN/GaN MIS high electron mobility transistor(GTCE-HEMT)with a combined polar and nonpolar AlGaN/GaN heterostucture is presented. The device simulation shows a threshold voltage of 1.24 V, peak transconductance of 182 m S/mm, and subthreshold slope of 85 m V/dec, which are obtained by adjusting the device parameters. Interestingly, it is possible to control the threshold voltage accurately without precisely controlling the etching depth in fabrication by adopting this structure. Besides, the breakdown voltage(VB) is significantly increased by 78% in comparison with the value of the conventional MIS-HEMT. Moreover, the fabrication process of the novel device is entirely compatible with that of the conventional depletion-mode(D-mode) polar AlGaN/GaN HEMT. It presents a promising way to realize the switch application and the E/D-mode logic circuits.  相似文献   

20.
Impact ionization of exciton states in epitaxial GaN films and GaN/AlGaN quantum-well structures was studied. The study was done using an optical method based on the observation of exciton photoluminescence quenching under application of an electric field. It was established that electron scattering on impurities dominates over that from acoustic phonons in electron relaxation in energy and momentum. The mean free path of the hot electrons was estimated. The hot-electron mean free path in GaN/AlGaN quantum wells was found to be an order of magnitude larger than that in epitaxial GaN films, which is due to the electron scattering probability being lower in the two-dimensional case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号