首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A method for determining the size of a colloidal nanoparticle by measuring the magnitude of the probe beam signal which can be remotely measured in a non-contact manner has been developed. The method using a probe beam signal is intended to employ a principle by which the path of a probe beam is changed by a laser-induced shock wave, accompanying the occurrence of a laser-induced breakdown of colloidal nanoparticles. It was observed that the peak and full width at half-maximum of a frequency distribution curve of the measured magnitude of a probe beam signal appear in direct correlation with the size of a nanoparticle at the fixed pulse energy of a laser beam for the breakdown. A calibration curve for a particle sizing is presented for particle diameters ranging from 20 to 60 nm, with reference polystyrene particles. An application is demonstrated for measuring hexavalent uranium colloidal particles generated by the hydrolysis of free uranyl ions.  相似文献   

2.
Laser-induced breakdown detection was performed to monitor the nanoparticles in an aqueous solution by means of a two-dimensional optical imaging method. To verify the relationship between the particle size and the optical image of a laser-induced plasma, we investigated the characteristics of its spatial distribution corresponding to the number of breakdown events plotted on the laser beam propagating axis. It was found that, for particles smaller than 50 nm in diameter, the spatial distribution follows a single Gaussian curve. For particles in the diameter range from 100 to 1000 nm, however, the spatial distribution follows a sum of the multiple Gaussian curves with different peak positions and peak heights. We demonstrated that particles smaller than 20 nm in trace concentrations, which are mixed with larger particles in the diameter range of a few hundred nm, can be measured by a peak deconvolution of the spatial distribution of a laser-induced plasma. PACS 42.62.Eh; 52.25.Rv; 52.70.Nc  相似文献   

3.
Photoluminescence from Si implanted silica is studied as a function of Si fluence and Si concentration profile in order to assess the effect of particle size and size distribution on emission spectra. Peaked (skewed Gaussian) concentration profiles were produced by implanting with 400 keV Si ions and uniform Si profiles were produced by a multi-energy implant sequences. Both as-implanted and annealed samples are shown to exhibit a distinct maximum in the emission intensity as a function of ion fluence, with the intensity increasing with fluence up to the maximum and then decreasing at higher fluences. Samples with a uniform Si profile are also shown to produce emission which is significantly red-shifted relative to that of samples with a peaked Si profile. This is consistent with the fact that such samples are expected to have a narrower particle size distribution (i.e. a greater fraction of larger particles).  相似文献   

4.
CdS半导体超微粒子的光学性质   总被引:3,自引:0,他引:3  
赵家龙  邹炳锁 《发光学报》1992,13(2):117-122
本文研究了水溶胶中的CdS半导体超微粒子和有机溶胶中的粒子表面被有机分子化学修饰的CdS超微粒子的光学性质.我们观察到,当粒子尺寸小于5nm时,CdS超微粒子表现出明显的尺寸量子化效应,并指出CdS超微粒子的表面修饰,增强了它们的发光强度,显著地影响了它们的光学性质。  相似文献   

5.
紫外光与降雨粒子相互作用发生散射,散射光特性改变能够反映降雨粒子的相关物理特性(如粒子尺寸参数、浓度、形态),因此研究粒子的物理参数对散射光特性的影响对有效提高光谱法定量探测降水的精度有很大意义。由于雨滴在非球形降水粒子中具有代表性,以群雨滴粒子为例,采用T矩阵理论,利用紫外光直视和非直视单次散射模型,分析了入射光波长、群雨滴粒子形态、降雨强度、粒径大小与散射光强之间的关系。并用蒙特卡洛方法仿真分析了非球形群雨滴粒子在不同降雨强度和粒径下散射角与散射光强之间的关系,以及降雨环境中的风切变对紫外光散射特性的影响。通过理论及仿真分析,得到了不同群雨滴粒子形态下的路径损耗,不同降雨强度、风切变率和粒径下的散射光强分布。仿真结果表明:在紫外光直视与非直视通信方式下,降雨环境中的通信质量比晴天条件下的通信质量差,即路径损耗增大。当粒径分布已知时,随着降雨强度的增大,衰减系数增大,路径损耗增加,且直视通信方式的路径损耗比非直视降低7 dB左右。随着降雨强度、风切变率和粒子粒径的增大,散射光强曲线整体呈下降趋势,其中,降雨强度的变化对散射光强分布影响程度最大。相同通信距离时,不同降雨强度下的紫外光散射光强分布均随着散射角的增大而减小,当散射角继续增大到90°时,有效散射体体积逐渐减小,接收到的光子能量减小,暴雨中的散射光强衰减程度最大。相同降雨强度下考虑风切变时,相比较无风时的路径损耗增大5 dB左右。除此之外,还研究了椭球形和切比雪夫形粒子对紫外光散射光强的影响,结果表明当粒子粒径分布相同时,椭球形粒子的散射光强衰减较广义切比雪夫形粒子大。根据散射粒子的散射光强分布以及路径损耗能够区分雨滴粒子是否由相同粒径及形态组成,为粒子测量提供理论基础。分析降水中群雨滴粒子的光散射特性,为提高光谱法评估降水衰减的数值模拟方面提供理论依据,为光学技术在探测识别降水现象等气象领域的广泛应用提供了设计参考。  相似文献   

6.
Radiation is the dominant mode of heat transfer near the burner of coal and biomass-fired boilers. Predicting and measuring heat transfer is critical to the design and operation of new boiler concepts. The individual contributions of gas and particle phases are dependent on gas and particle concentration, particle size, and gas and particle temperature which vary with location relative to the flame. A method for measuring the contributions of both gas and particle radiation capable of being applied in harsh high temperature and pressure environments has been demonstrated using emission from particles and water vapor using an optical fiber probe transmitting a signal to a Fourier Transform Infrared (FTIR) spectrometer. The method was demonstrated in four environments of varying gas and particle loading using natural gas and pulverized wood flames in a down-fired 130?kWth cylindrical reactor. The method generates a gas and particle temperature, gas concentrations (H2O and CO2), total gas and particle intensities, and gas and particle total effective emissivity from line-of-sight emission measurements. For the conditions measured, downstream of the luminous flame zone, water vapor and CO2 radiation were the dominant modes of heat transfer (effective emissivity 0.13–0.19) with particles making a minor contribution (effective emissivity 0.01–0.02). Within a lean natural gas flame, soot emission was low (effective emissivity 0.02) compared to gas (0.14) but within a luminous flame of burning wood particles (500?µm mean diameter) the particles (soot and burning wood) produced a higher effective emissivity (0.17) than the gas (0.12). The measurement technique was therefore found to be effective for several types of combustion environments.  相似文献   

7.
将超声波作用于沉降的颗粒时,由于颗粒的移动,超声回波会出现相位差异。该文通过对测量杯中某一确定深度处的回波信号进行相位分析和重组,发现重组后信号的频率可以计算出粒径;并分别对两种不同粒径分布的聚甲基丙烯酸甲酯(PMMA)微球悬浮液进行了超声波信号采样重组和去噪的实验,实验结果经小波时频方法分析后,证实了颗粒粒径分布与重组信号频率构成的确存在很高的相关性。  相似文献   

8.
A method based on the measurement of scattered light intensity distributions is demonstrated to be able to determine directly the particle size of monodisperse supermicron-size particles. In all other cases of a particle cloud, information about the size distribution can be acquired from comparison of measured and calculated intensities as a function of scattering angle. This indirect method is only applicable if the assumptions made in the theory used for comparison are fulfilled. Therefore, the method is limited to spherical particles with known refractive index. The type of size distribution also has to be known. In the cases considered a log-normal size distribution was assumed. The uncertainty of the result increases with increase in the number of parameters that have to be determined. The method seems to be limited to unimodal distributions described with two parameters.  相似文献   

9.
Dynamic light scattering signals from particles, exhibit fractal characteristics. This feature can be used to determine the particle size. The use of the fractal dimension, as a quantitative method to analyze the properties of dynamic light scattering signals from submicron particles, is presented. The analysis is performed directly on the time‐resolved scattered intensity, and the Box Dimensions of light scattering signals of particles with diameters 100, 200, 500 and 1000 nm. The experimental results show that the fractal dimensions of light scattering signals correlate well with particle size. In the submicron size range, the smaller the particles, the larger their fractal dimensions. Compared with the PCS technique, only several hundreds of samples are required in the fractal method. Therefore, the data processing is easily accomplished. However, this method only provides the mean particle size, but not the particle size distribution.  相似文献   

10.
Nano-aluminum particles are produced by a wire explosion process in different inert gas ambience. It is observed that generated particles have different sizes and it follows log–normal probability distribution. The particle size produced by the wire explosion process varies depending on the thermal conductivity of the medium and the operating pressure of the gas. To understand the mechanism of nano-particle formation, the optical-emission spectroscopic technique is used for measuring characteristics of plasma generated during the wire explosion process. Strong emission lines were observed from the species formed during the wire explosion process. Plasma temperatures are estimated based on local thermal equilibrium principle and using Al emission lines. Plasma temperature of more than 8000 K is observed in an Ar ambient. The optical emission study clearly indicates that the intensity of plasma increases with an increase in the ambient pressure. Further, it is observed that an increase in the pressure of the gas, the plasma temperature also increases. The study shows that the plasma temperature in the He gas is lesser than in the Ar gas. The plasma temperature due to the discharge plays a significant role on nano-particle formation. In addition, it is observed that irrespective of polarity, emission characteristics are almost the same.  相似文献   

11.
An aerosol measurement instrument is presented which allows for the simultaneous measurement of the size distribution, number concentration and velocities of particles. A commercial optical particle counter (OPC) was modified in terms of optics and signal evaluation to provide the required measurement information. The design of this instrument allows the definition of a cubic measuring volume by purely optical means. This is achieved by an aperture/lens system which projects a sharply defined light beam into a stream of aerosol flow. Light scattered from single particles at average angles of 90° is collected by two opposite receiver units, each projecting light on to a separate photomultiplier. The intensity of the scattered light with this instrument is found to be an unambiguous function of the particle size. The total number of particles detected per unit time results in the particle flux. The particle velocity can be calculated, in principle, through the correlation of the signal length and the optical length of the measuring volume, provided that the particles have a straight trajectory through the measuring volume and the measuring volume length in the mean flow direction is well defined. The absence of sharpness in real optical projections effects a border zone of definite length, in which the illumination declines to zero. This leads, together with the low-pass filtering of the particle signals, to an increase in the length of the signal slopes, causing some difficulties in the determination of the signal length. A digital signal evaluation technique was developed that renders possible the clear differentiation between the slope and the kernel region of the signal. The latter represents the motion of particles through the completely illuminated region, which can be a more accurate parameter to define the signal length. In addition to the signal length determination, a cross-correlation technique was tested for its potential to obtain particle velocity. the instrument has two interlaced measuring volumes of nearly the same size, which are shifted for this special application in the main flow direction by 20 μm. The phase difference between the signals from the two photomultipliers, together with the optical distance, yields the particle velocity.  相似文献   

12.
Transmission fluctuation spectrometry with temporal correlation (TFS‐TC) is a new method for particle analysis. When a narrow light beam irradiates on a particle dispersion flow, the variation of the number of particles in the small measuring zone will cause the transmitted light to fluctuate, which includes the complete information on both particle size distribution (PSD) and particle concentration. The method may be used for real‐time, inline/online applications due to its simplicity of measuring principle and experimental setup. Until recently, the theory has been limited to low particle concentrations. In this work, an experimental study of the TFS‐TC measurement is presented for a very wide range of the particle concentrations. By introducing an empirical correction including the high concentration effects and considering the effect from rheological conditions in the inversion algorithm, the particle size distribution and particle concentration are reconstructed, resulting in the coverage of a broad range of particle size and concentration.  相似文献   

13.
 对液体抛撒的液滴尺寸进行研究在军事和民用上是很重要的,国内刚开始使用激光散射仪开展此项研究工作。利用R. A. Dobbins等人的液体颗粒测量技术,研制了一套既简单又实用的测量液体抛撒过程中液滴尺寸的实验装置——激光散射仪。对于激光与液体微粒的相互作用,当微粒的反射与折射和吸收效应可被忽略时,可导出液体微粒对激光散射的光强公式。只要测量激光被微粒散射的光强,就可推算出微粒的Sauter平均直径。在使用激光散射仪测量液体抛撒液滴尺寸的实验中,用水代替爆炸抛撒液体,测量结果表明:液体抛撒二次破碎中,在固定位置测量到的云雾区液滴Sauter平均直径随测量时间的增加呈现出减小的趋势;而云雾区的宽度则随着与抛撒中心距离的增大而呈现出增加的趋势;云雾区前沿的液滴Sauter平均直径随着与抛撒中心距离的增加而呈现出先逐渐增大然后迅速减小的趋势。为便于比较,对燃料抛撒二次破碎进行了回收法测量和数值模拟计算,其测量与计算结果与用激光散射仪测量的结果有较好的一致性。  相似文献   

14.
刘凤馨  冯国英  杨超  周寿桓 《强激光与粒子束》2018,30(7):074103-1-074103-6
设计并搭建了基于高压放电方式的金属丝电爆炸制备纳米粉体的实验装置,并配备了电流电压测量辅助系统,可以方便地制备纳米颗粒,实时记录电爆炸过程中的电流和电压。对Zr丝进行电爆炸实验;理论上分析了Zr丝在电爆炸过程中的沉积能量以及物态的变化过程。研究了充电电压对沉积能量和纳米粉体特性的影响规律。通过元素能谱(EDS)和X射线衍射仪(XRD)对制备的纳米粉体做了成分分析。采用透射电子显微镜(TEM)观察纳米粉体的形貌和结构,并用电镜统计观察法得到纳米粉体的粒度分布。研究结果表明:电压的增大,会使沉积能量增加,并缩短锆丝完全汽化所需时间。增大充电电压可显著缩小纳米粉体的粒径分布范围,并得到更小平均粒径的颗粒。电爆炸锆丝的产物是ZrO2纳米颗粒,其晶相结构为单斜晶系(m-ZrO2)和立方晶系(c-ZrO2),并且颗粒呈良好的球形,表面光滑,轮廓清晰,粒径分布主要集中在10 nm到40 nm之间。  相似文献   

15.
基于超声衰减谱的纳米颗粒粒度分布测量研究   总被引:1,自引:0,他引:1  
利用变声程方式测量纳米颗粒悬浮液的超声衰减谱,以McClements模型和BLBL模型为理论基础,采用最优正则化(ORT)算法,反演得到纳米颗粒的粒度分布。运用该方法,对体积浓度1%的纳米二氧化钛-水悬浊液进行测量,与透射电镜(TEM)图像以及离心沉降纳米粒度分析仪检测结果对比,测量结果吻合较好,表明了利用超声衰减谱方法测量纳米颗粒粒度分布的可行性与可靠性。   相似文献   

16.
颗粒测试在工业生产和科学研究中涉及的领域非常广泛,常用的颗粒粒度及其分布的测试方法是激光粒度测试法,其具有测试精度高、测量速度快、重复性好和可测粒径范围宽等突出优点。CCD传感器有灵敏度高、分辨率高、噪声小和较大的动态范围等优点,其作为激光粒度仪的探测器提高光强分辨率的应用已经很普遍了。为提高测量精度,通过对CCD传感技术的研究,应用图像处理的方法来设计光电探测器,搭建了基于米氏散射原理的激光粒度测试系统。实验结果表明,用CCD传感器采集光散射图像,再对图像进行处理,D50与D10误差在6%之内,D90误差在1%之内,降低了测量的重复误差。  相似文献   

17.
Some particle size analyzers, such as the Par-Tec® 100 (Laser Sensor Technology, Redmond, WA, USA), measure the so-called cord length distribution (CLD) as the laser beam emitted from the sensor randomly crosses two edges of a particle (a cord length). The objectives of this study were to develop a model that can predict the response of the Par-Tec® 100 in measuring the CLD of a suspension for spherical and ellipsoidal particles and to infer the actual particle size distribution (PSD) using the measured CLD output. The model showed that the measured CLD is reasonably accurate for the spherical particles. However, this measurement progressively deteriorates as the shape of particles changes from spherical to ellipsoidal with large ratios of major to minor diameters. Experimental results obtained with spherical particles having a normal and a non-normal PSD indicated that the Par-Tec® 100 measurements deteriorate as the PSD deviates from a normal distribution. The information obtained from these experiments also showed that the model can reasonably predict the Par-Tec® response. Use of the inferred PSD rather than the measured CLD made a major improvement in estimating the actual PSD. Mean particle size analysis revealed that the Par-Tec® 100 volume-weighted mean particle size is closest to the unweighted mean particle size measured by sieve analysis.  相似文献   

18.
Effectiveness of radiation treatment for cancer is limited in hypoxic tumors. Previous data shows that UVC-emitting nanoparticles enhance cytotoxicity of X-ray irradiation in hypoxic tumor cells. This study examines the impact on cell killing, particle size, uptake into cells, incubation time, and UV emission intensity of LuPO4:Pr3+,Nd3+. A549 cells are treated with LuPO4:Pr3+,Nd3+ and X-rays. The surviving fraction is evaluated using the colony formation assay after treatment of cells with different particle sizes (D50 = 0.16 and 5.05 µm) and after different incubation times before X-ray irradiation. Nanoparticle uptake into cells is verified by transmission electron microscopy and quantified by inductively coupled plasma mass spectrometry. The microparticles exhibit a five times higher emission intensity compared to nanoparticles. Both particle sizes show an increased cytotoxic effect after X-ray excitation with prolonged incubation times. Surprisingly, the smaller nanoparticles show a significantly higher biological effect compared to the larger particles, despite their significantly lower UVC emission. Nanoparticles accumulate more quickly and closer to the nucleus than the microparticles, resulting in higher localized UVC emission and greater lethality. The results suggest that the number of intracellular particles and their proximity to the cell DNA is more important than the emission intensity of the particles.  相似文献   

19.
激光诱导煤粉发射光谱的基体效应研究   总被引:2,自引:0,他引:2  
激光诱导发射光谱分析技术是目前正被广泛发展的一种元素定量检测手段,其分析结果的准确性与精度和分析基体的物理化学特性紧密相关.本文采用波长为1064nm的激光烧蚀煤样,以中阶梯光谱仪和ICCD分析诱导产生的等离子体发射光谱.通过试验基体的不同形态特性对各种元素定量分析特征光谱的强度、稳定性以及元素分析探测限的影响,研究激光诱导煤粉发射光谱的基体效应规律,并从激光等离子体形成的理论机制上进行实验分析.研究表明,适中的煤粉颗粒尺寸与样品密度更有利于激光诱导煤粉发射光谱的定量分析.  相似文献   

20.
The performance of a narrow-angle and a wide-angle, forward scattering laser aerosol spectrometer has been studied as a function of particle size and refractive index. The results have been compared with theoretical calculations based on light scattering theory. The results indicate that for the narrow-angle instrument, the scattered-light intensity is not a monotonic function of particle size for transparent particles (a monotonic relationship is required for unambiguous particle size measurement) above 0.7 μm. The instrument is therefore limited in its useful range to size distribution measurement between 0.2 μm – its lower particle size limit – and 0.7 μm for transparent particles. In the case of the wide-angle instrument, the instrument output is a monotonic function of particle size for transparent particles, but the output is severely attenuated for light absorbing particles above 0.3 μm. The instrument, therefore, cannot be used for accurate size measurements above 0.3 μm for light absorbing particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号