首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel sensitive and specific Hg(2+) chemodosimeter, derived from 1',3'-dithiane-substituted 2,1,3-benzoxadiazole, displays "turn-on" fluorescent and colorimetric responses via an Hg(2+)-triggered aldehyde recovery reaction. Its potential to monitor Hg(2+) in living organisms has been demonstrated using zebrafish larvae.  相似文献   

2.
A novel water soluble Hg(2+)-selective chemosensor 1 with hemicyanine as fluorescent reporting group and NO(2)Se(2) chelating unit as ion binding site was reported. Chemosensor 1 shows a specific Hg(2+) selectivity and discrimination between Hg(2+) and chemically similar ions in conjunction with a visible colorimetric change from red to colorless, potentially leading to both "naked-eye" and fluorometric detection of Hg(2+) cations.  相似文献   

3.
Wu J  Li L  Zhu D  He P  Fang Y  Cheng G 《Analytica chimica acta》2011,694(1-2):115-119
A colorimetric nanoprobe-mercury-specific DNA-functionalized gold nanoparticles (Au-MSD) was developed for sensing Hg(2+). The new mercury-sensing concept relies on measuring changes in the inhibition of "non-crosslinking" aggregation of Au-MSD-induced by the folding of mercury-specific DNA strand through the thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination. In the absence of Hg(2+), a high concentration of MgCl(2) (50 mM) results in a rapid aggregation of Au-MSD because of the removal of charge repulsion. When Hg(2+) is present, the particles remain stable due to the folding of MSD functionalized on the particle surface. The assay enables the colorimetric detection of Hg(2+) in the concentration range of 0.1-10 μM Hg(2+) ions with a detection limit of 60 nM, and allows for the selective discrimination of Hg(2+) ions from the other competitive metal ions. Toward the goal for practical applications, the sensor was further evaluated by monitoring Hg(2+) in fish tissue samples.  相似文献   

4.
姜佳丽  卢华  沈珍 《无机化学学报》2010,26(6):1105-1108
The synthesis and sensing properties of a new BODIPY derivative 1 are outlined. 1 shows fluorescence “turn-on” and colorimetric responses with high selectivity toward Hg2+ over the other metal cations. Coordination of Hg2+ influences the electronic properties of the receptor at meso-position and alter the efficiency of non-radiative decay, hence increase the fluorescence intensity and red shift the absorption spectrum.  相似文献   

5.
We report on a method for highly sensitive and selective colorimetric determination of Hg(II) via a signal amplification strategy. Cu@Au nanoparticles (NPs) are found to exhibit intrinsic peroxidase-like activity and can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine by H2O2. This is accompanied by a solution color change from colorless to green (with an absorption peak at 655 nm). The catalytic capability of the Cu@Au NPs (pale green) is strongly enhanced by a Cu@Au-Hg trimetallic amalgam (bluish), and this effect can be applied directly to the determination of Hg(II). The limit of detection as observed with the unaided eye is 10 nM, which is at least one order of magnitude lower than that of the known AuNP-based colorimetric assay. Due to excellent specificity of the amalgamation process, the assay is highly selective for Hg(II) and is not interfered by other metal ions in up to 0.5 μM concentrations. This assay was successfully applied to the determination of Hg(II) in tap water. In view of these advantages, we expect this colorimetric method to become an attractive tool for the quantitation of Hg(II) in biological, environmental, and food samples.
Graphical Abstract Cu@Au nanoparticles (NPs) exhibit intrinsic peroxidase-like activity and can catalyze the oxidation of tetramethylbenzidine (TMB) by H2O2. This is accompanied by a color change of the solution from colorless to green.
  相似文献   

6.
Xu H  Wang Y  Huang X  Li Y  Zhang H  Zhong X 《The Analyst》2012,137(4):924-931
In this work, we report a colorimetric assay for the screening of biothiols including glutathione (GSH), cysteine (Cys), and homocysteine (Hcys) based on Hg(2+)-mediated aggregation of gold nanoparticles (AuNPs). Hg(2+) can induce aggregation of thiol-containing naphthalimide (1) capped AuNPs due to the cross-linking interactions from the resulting "thymine-Hg(2+)-thymine" (T-Hg(2+)-T) analogous structure. When Hg(2+) is firstly treated with biothiols, followed by mixing with 1-capped AuNPs suspension, AuNPs undergo a transformation from an aggregation to a dispersion state depending on the concentration of biothiols. This anti-aggregation or re-dispersion of AuNPs is due to the higher affinity of Hg(2+) for biothiols relative to compound 1. The corresponding color variation in the process of anti-aggregation of AuNPs can be used for the quantitative screening of biothiols through UV-vis spectroscopy or by the naked eye. Under optimized conditions, a good linear relationship in the range of 0.025-2.28 μM is obtained for GSH, 0.035-1.53 μM for Cys, and 0.040-2.20 μM for Hcys. The detection limits of this assay for GSH, Cys, and Hcys are 17, 9, and 18 nM, respectively. This colorimetric assay exhibits a high selectivity and sensitivity with tunable dynamic range. The proposed method has been successfully used in the determination of total biothiol content in human urine samples.  相似文献   

7.
We have developed a simple method for the highly selective colorimetric detection of dissolved mercury(II) ions via direct formation of gold nanoparticles (AuNPs). The dithia-diaza ligand 2-[3-(2-amino-ethylsulfanyl)-propylsulfanyl]-ethylamine (AEPE) was used as a stabilizer to protect AuNPs from aggregation and to impart highly selective recognition of Hg(II) ion over other metal ions. A solution of Au(III) ion is directly reduced by sodium borohydride in the presence of AEPE and the detergent Triton X-100. This results in the formation of AEPE-AuNPs and a red coloration of the solution. On the other hand, in the presence of Hg(II), the solution turns blue within a few seconds after the addition of borohydride. This can be detected spectrophotometrically or even visually. The method was successfully applied to quantify Hg(II) levels in water sample, with a minimum detectable concentration as low as 35?nM.
Figure
A rapid colorimetric method for Hg2+ detection based on the reduction of Au3+ to gold nanoparticles in the presence of dithia-diaza (2S-2N) ligand was developed. The colors of the solutions without and with Hg2+ were red and blue, respectively.  相似文献   

8.
Kim HN  Nam SW  Swamy KM  Jin Y  Chen X  Kim Y  Kim SJ  Park S  Yoon J 《The Analyst》2011,136(7):1339-1343
In this paper, we report new rhodamine hydrazone derivatives bearing thiol and carboxylic acid groups as selective fluorescent and colorimetric chemosensors for Hg(2+). The ring-opening process of spirolactam enables the large fluorescent enhancement and colorimetric change upon the addition of Hg(2+). The sample containing Hg(2+) was mixed with one of the chemosensors in a microchannel where the sensor was examined using confocal laser scanning microscopy. A plot of the fluorescent intensities of both chemosensors versus the log concentration of Hg(2+) exhibited a linear response (r(2)=0.95) in the range of 1 nM-1 μM, and the detection limits were 1 nM and 4.2 nM, respectively. Both chemosensors also enable the visualization of Hg(2+) accumulated in the nematode Caenorhabditis elegans previously exposed to nanomolar concentrations of Hg(2+).  相似文献   

9.
Wang H  Li Y  Xu S  Li Y  Zhou C  Fei X  Sun L  Zhang C  Li Y  Yang Q  Xu X 《Organic & biomolecular chemistry》2011,9(8):2850-2855
A novel rhodamine-based highly sensitive and selective colorimetric off-on fluorescent chemosensor for Hg(2+) ions is designed and prepared by using the well-known thiospirolactam rhodamine chromophore and furfural hydrazone as signal-reporting groups. The photophysical characterization and Hg(2+)-binding properties of sensor RS1 in neutral N, N-dimethylformamide (DMF) aqueous solution are also investigated. The signal change of the chemosensor is based on a specific metal ion induced reversible ring-opening mechanism of the rhodamine spirolactam. The response of the chemosensor for Hg(2+) ions is instantaneous and reversible. And it successfully exhibits a remarkably "turn on" response toward Hg(2+) over other metal ions (even those that exist in high concentration). Moreover, this sensor is applied for in vivo imaging in Rat Schwann cells to confirm that RS1 can be used as a fluorescent probe for monitoring Hg(2+) in living cells with satisfying results, which further demonstrates its value of practical applications in environmental and biological systems.  相似文献   

10.
基于半胱氨酸(Cys)中的–SH与Hg2+配合生成稳定的Hg(Cys)2,有效抑制抗坏血酸(Vc)还原Hg2+生成Hg0,进而抑制Hg0与金纳米棒(AuNRs)纵向部位的Au作用而生成金汞齐,导致AuNRs的纵向等离子体共振(Longitudinal surface plasmon resonance,LSPR)吸收峰红移,相应的吸光度(A)增大,并且伴随着溶液颜色的显著变化,同时随着Cys浓度的增大,吸光度A也逐渐增大,据此建立了一种快速  相似文献   

11.
A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media was developed. The system, which utilizes an irreversible Hg2+-promoted oxadiazole forming reaction, responds instantaneously at room temperature in a 1:1 stoichiometric manner to the amount of Hg2+. The selectivity of this system for Hg2+ over other metal ions is remarkably high, and its sensitivity is below 2 ppb in aqueous solutions.  相似文献   

12.
A new colorimetric mercury sensor is reported based on binding to terpyridine derivatives. It is able to selectively detect Hg II ions over a number of environmentally relevant ions including Ca II, Pb II, Zn II, Cd II, Ni II, Cu II, and others. The response time upon exposure to Hg II is instantaneous. By the "naked eye," the detection limit of Hg II is 2 ppm (25 microM) in solution. With a spectrometer, this detection limit is increased down to 2 ppb (25 nM), which is the current EPA standard for drinking water. The significant problem of mercury poisoning requires new methods of detection that are sensitive and selective. Here we report a new simple system that takes advantage of the unique optical properties generated by terpyiridine-Hg complexes.  相似文献   

13.
A new approach for simple and rapid colorimetric detection of Hg(2+) in aqueous solution is proposed based on Hg(2+)-induced aggregation of mononucleotides-stabilized gold nanoparticles.  相似文献   

14.
An ultrasensitive conformation-dependent colorimetric assay has been developed for the detection of mercury(II) ions. It is based on the use of exonuclease III (Exo III)-assisted target recycling and gold nanoparticles (AuNPs). In the absence of Hg(II), the hairpin-shaped DNA probe (H-DNA) binds to AuNPs and stabilizes them in solutions of high ionic strength. In the presence of Hg(II), on the other hand, the sticky termini of the H-DNA form a rigid DNA duplex stem with a blunt 3′-terminus. Thus, Exo III is activated as a biocatalyst for selective and stepwise removal of mononucleotides from the 3′-terminus of the H-DNA. As a result, Hg(II) is released from the T?Hg(II)?T complexes. The guanine-rich sequences released from the H-DNA are then self-assembled with potassium ion to form a stable G-quadruplex conformation. In solutions of high ionic strength, this results in aggregation of AuNPs and a color change from red to blue which can be seen with bare eyes. The method is highly sensitive and selective. It has a linear response in the 10 pM to 100 nM Hg(II) concentration range, and the detection limit is as low as 3.2 pM (at an S/N ratio of 3). The relative standard deviation at a level of 0.5 nM of Hg(II) is 4.9% (for n?=?10). The method was applied to the detection of Hg(II) in spiked environment water samples, with recoveries ranging from 92% to 106%.
Graphical abstract A conformation-dependent colorimetric system was fabricated for label-free detection of mercury(II) by utilizing exonuclease III(Exo III)-assisted target recycling and gold nanoparticles (AuNPs).
  相似文献   

15.
A novel chemical sensor for the colorimetric detection of mercuric salts is described. The sensor is based on a mesoporous nanocrystalline TiO2 film sensitised with a ruthenium dye; immersion of this film in an aqueous solution of Hg2+ results in a rapid colorimetric response, with both a high selectivity and a sub-micromolar sensitivity.  相似文献   

16.
The authors describe a colorimetric method for the determination of Hg(II) ion. It is based on the color change from red to colorless as displayed by gold nanoparticle (AuNP) modified with thymine - rich DNA. Signal amplification is accomplished by free strand displacement recycling. In this strategy, Hg(II) unfolds the arch-trigger duplex due to the high affinity between Hg(II) and the thymines to form T-Hg(II)-T structures, thereby causing the release of trigger. The liberated trigger unfolds the hairpin structure of H1, and unfolded H1 further unfolds with H2. As a result, the H2 hairpin displaces trigger, and the released trigger unfolds another H1. This results in strong and enzyme-free strand displacement recycling amplification. The aggregation of DNA-AuNPs occurs in the presence of the duplex formed by hairpins H2 and H1. This results in a color change from red to colorless that can be visually observed. Under optimal conditions, the assay has a detection range over 4 orders of magnitude and a 3.4 nM detection limit. The assay is selective, sensitive, rapid and cost-effective. In our perception, it represents a useful platform for determination of Hg(II).
Graphical abstract Schematic presentation of the  simple, rapid, low cost colorimetric detection of mercury(II) based on enzyme-free strand displacement amplification along with DNA-labeled AuNP.
  相似文献   

17.
A series of platinum(II) terpyridine complexes featuring an aminostilbene donor-acceptor framework was synthesized. The complex with a dithiaazacrown moiety exhibits a highly sensitive and selective colorimetric response to a Hg(2+) cation through modulation of the relative strength of ICT and MLCT transitions. The results from (1)H NMR titration suggest the existence of a weak Pt(II)···Hg(II) metallophilic interaction at low Hg(2+) concentration.  相似文献   

18.
合成了以半青蓝素为发光基团,分别以Se2N和S2N为结合位点的比色传感器3a和3b,通过紫外-可见光谱研究了它们对各种金属离子的化学传感行为. 结果表明,与含有S原子的主体分子3b相比,含有Se杂原子的主体3a对Hg2+具有较好的识别作用.向主体3a的乙腈水溶液中加入Hg2+后,其吸收光谱在410 nm处出现了一个新的吸收峰,同时溶液颜色由玫瑰红色变为桔黄色. 因此,化合物3a有望成为一种用于检测Hg2+的新型化学传感器.  相似文献   

19.
T Ye  C He  Y Qu  Z Deng  Y Jiang  M Li  X Chen 《The Analyst》2012,137(18):4131-4134
A 'turn-on' fluorescent colorimetric device for Hg(2+) sensing was built using a dual light-emitting diode system. Fluorescence generated from a rhodamine derivative (RHD), an indicator for Hg(2+) sensing, was combined with a background red light, and the complex light was captured by a commercial charge coupled device camera or by the naked eye.  相似文献   

20.
Mercury-stimulated peroxidase mimetic activity of gold nanoparticles was presented, with which a sensitive label-free colorimetric method for Hg(2+) was developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号