首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The optical properties of sol-gel synthesized porous silica excited by synchrotron radiation in the 4-10 eV range of samples with different porosity at 8 K and room temperature are reported. The analysis of the ultraviolet photoluminescence indicate the contributions of two different emitting centers. The spectral and temporal characteristics of the two luminescence bands are reported: emission peaks at about 3.7 and 4.0 eV, excitation channels around 5.4-5.7 and 6.2-6.5 eV, and mean lifetimes of about 17 and 2 ns, respectively. The analysis of the optical properties in samples with different porosity allows us to propose a silanol-related model for the two centers.  相似文献   

2.
Abstract— Human plasma apolipoprotein A-I (apoA-I) and apolipoprotein C-I (apoC-I) were investigated by time-resolved fluorescence decay and depolarization. The tryptophyl fluorescence of apoA-I undergoes a double-exponential decay with lifetimes of 1.07 and 3.43 ns which remain unchanged over the range of apoA-I concentration studied.
The time-resolved fluorescence of both native and denatured forms of apoC-I exhibits an unusual tryptophyl fluorescence decay that was best fit to a triexponential function with lifetimes at 3.7 ± 0.2, 1.1 ± 0.1 and 0.1 ns at 2°C. The native and denatured forms of apoC-I had rotational correlation times of 1.42 and 1.19 ns at 20°C respectively. A shorter rotational correlation time associated with the internal tryptophan motions was not observed or resolved.
The decay of tryptophyl fluorescence in apoC-I/DPPC/cholesterol complex at 20°C is also triexponential with lifetimes at 4.94, 1.28 and 0.21 ns, which are longer than those of the uncomplexed forms. Two rotational correlation times of 28.32 and 0.59 ns at 20°C were resolved by fluorescence depolarization measurements. The long rotational time remained constant with temperatures above 30°C. Also, the temperature dependence of the order parameter, S2, resembled a lipid phase transition curve with a transition midpoint at 38°C. The tryptophan and thus apoC-I are found to be affected by the bulk changes in the lipid.  相似文献   

3.
The electron trapping or attachment cross section of carbon dioxide (CO2) condensed as thin films on a spacer of Ar is obtained using a simple model for electron trapping in a molecular film and then charge releasing from the same film by photon absorption. The measurements are presented for different electron exposures and impact energies, film thicknesses, and probing photon energies. The cross section for trapping an electron of incident energy between 0 and 5 eV reveals three different attachment processes characterized by a maximum at about 0.75 eV, a structured feature around 2.25 eV, and a shoulder around 3.75 eV. From the measurement of their dependence with the probing photon energy, the two lowest processes produce traps having a vertical electron binding energy of approximately 3.5 eV, whereas the highest one yields a slightly higher value of approximately 3.7 eV. The 0.75 eV maximum corresponds to the formation of vibrational Feshbach resonances in (CO2)n- anion clusters. The 2.25 eV feature is attributed to the formation of a vibrationally excited 2Piu anion in (CO2)n- clusters, followed by fast decay into its vibrational ground state without undergoing autodetachment. Finally, 3.75 eV shoulder is assigned to the well-known dissociative electron attachment process from 2Piu anion state producing the O- anion in the gas phase and the (CO2)nO- anions in clusters.  相似文献   

4.
Photoluminescence (PL) spectra of Si species encapsulated in zeolite supercages are studied. It is reported that the chained Si species terminated partially with phenyl groups and with some unsaturated bonds are formed in zeolite supercages by the reaction with phenylsilane and they show PL around 4 eV (J. Phys. Chem. 2004, 108, 2501-2508). In the present paper they are reduced with hydrogen to prepare Si chained species terminated and saturated with hydrogen atoms. The PL spectra are deconvoluted to be four components at 1.9, 2.2, 2.6, and 3.7 eV, which can tentatively be assigned to Si nanocrystals and Si quantum wires in addition to defects in SiO2 and uncontrolled organic impurities in zeolite, respectively. At elevated temperatures the Si quantum wires in zeolite pores seem to change the Si nanocrystals with the size larger than that of the zeolite pore diameter. It is the first case in which the PL decay lifetime of oxygen vacancies in zeolite can be detected to be quite short to be about 16 ns. The detected lifetimes of Si quantum wires are significantly very short, about 12 ns. The Si species encapsulated zeolite is solvated with hydrofluoric acid solution to separate the Si quantum wires by dissolving zeolite lattice. The Si quantum wires in the HF solution show intense PL spectra peaked at 2.33 eV and broad UV spectra around 2.8-3.5 eV. They will have different shapes and lengths. The HF solvated zeolite shows still PL spectra characteristic of oxygen vacancies and the absorption edge at 3.6 eV. The result means that zeolite lattice is solvated in HF solution as clusters with a band gap of 3.6 eV and they can still have some oxygen vacancies. Oxygen vacancies situate about 1.0 eV below the zeolite conduction band minimum, and the absorbed energy can be dissipated as PL between the valence band maximum and the oxygen vacancies. It is concluded that the excitation photon energy can be absorbed in zeolite and the Si quantum wires and then the absorbed energies are competitively relaxed in zeolite and the Si quantum wires.  相似文献   

5.
A realistic dynamics simulation study is reported for the ultrafast radiationless deactivation of 9H-adenine. The simulation follows two different excitations induced by two 80 fs (fwhm) laser pulses that are different in energy: one has a photon energy of 5.0 eV, and the other has a photon energy of 4.8 eV. The simulation shows that the excited molecule decays to the electronic ground state from the (1)pipi* state in both excitations but through two different radiationless pathways: in the 5.0 eV excitation, the decay channel involves the out-of-plane vibration of the amino group, whereas in the 4.8 eV excitation, the decay strongly associates with the deformation of the pyrimidine at the C 2 atom. The lifetime of the (1) npi* state determined in the simulation study is 630 fs for the 5.0 eV excitation and 1120 fs for the 4.8 eV excitation. These are consistent with the experimental values of 750 and 1000 fs. We conclude that the experimentally observed difference in the lifetime of the (1) npi* state at various excitations results from the different radiationless deactivation pathways of the excited molecule to the electronic ground state.  相似文献   

6.
Ionization in the energetical range between 35 eV and 75 eV of aqueous Li(+) microsolvation clusters may initialize several different electronic decay processes. Electronic decay following H(2)O 2s ionization in a cationic cluster is reported. Li ionization probes the efficiency of electron transfer mediated decay (ETMD) processes. We report estimated ETMD lifetimes in the range of 20-100 fs for clusters with one to five water monomers. Furthermore, tertiary electron emission may occur via a combined cascade of electron transfer mediated decay and intermolecular Coulombic decay.  相似文献   

7.
Abstract— Steady-state and multifrequency phase fluorometry were used to characterize the conformational state and conformational dynamics of recombinant tick anticoagulant peptide ( Ornithodorus moubata ) (TAP). The TAP contains two tryptophan residues at positions 11 and 37. The fluorescence emission varies sigmoidally as a function of pH with a pKa of 6.01 ± 0.07. This pH dependency suggests that tryptophan fluorescence is quenched by His43 at low pH. This is confirmed by modification of the his-tidine with diethylpyrocarbonate. At pH 9 the fluorescence decay is well described by a sum of three exponentials (0.52,1.9 and 5.4 ns), which decrease all three at pH 4 (0.25, 1.61 and 4.4 ns). From the reactivity of the fluorescence lifetimes toward N -bromosuccinimide and from the calculation of the accessibility we can attribute the long lifetime to Trpll, the short one to Trp37 and the middle one to both. The anisotropy decay was resolved into two components of 3.85 ns and 0.27 ns at pH 4 and 4.5 ns and 0.6 ns at pH 9. The long anisotropy decay time corresponds to the rotational correlation time of the protein, the short one to local mobility of the tryptophan residues.  相似文献   

8.
Emission lifetimes of band edge and deep trap states of CdS nanoparticles with different surface capping were measured using time-resolved single-photon-counting[1]. For unpassivated nanoparticles with low fluorescence yield, the emission is dominated by deep trap states and the decay can be fit to a single exponential with a time constant of 5 ns that is independent of excitation intensity. For surface passivated nanoparticles with strong luminescence, the emission is dominated by band edge states and the decay is fit to a double exponential with time constants of a few ns and 50 ns. While the 50 ns decay is independent of excitation intensity, the fast component is strongly dependent on intensity. For the fast decay component, the amplitude decreases non-linearly and the time constant becomes longer (from 2.5 to 7.9 ns) as the intensity decrease. The results support the model of exciton-exciton annihilation[2] upon trap state saturation at high excitation intensities.  相似文献   

9.
The synthesis and crystal structure of Li3AlB2O6 with different cell parameters are reported and these cells are transformed each other from the confirmation of crystallographic structural analyses. The absorption spectrum, luminescence and lifetimes of the Li3AlB2O6 and LiSrBO3 solid compounds are measured and the comparisons are made between them. It is shown that the absorption edges are at about 400 nm (or band gap 3.1 eV) and there is one of absorption peaks at about 350 nm for the Li3AlB2O6 and LiSrBO3. The emission band (530 nm) makes a red shift and fluorescence decay time (24.39 ns) of the Li3AlB2O6 becomes smaller compared with the emission band (480 nm) and lifetime (93.16 ns) of the LiSrBO3 at the visible region. The transition energies and oscillator strengths of the clusters (Li3AlB2O6)2 and (LiSrBO3)2 lying at low excited states are calculated by the time-dependent Hartree-Fock method. The obtained results are used to model the photophysical properties and discuss the origin of spectral bands of the Li3AlB2O6 and LiSrBO3.  相似文献   

10.
We describe a novel application of frequency-domain fluorometry which allows resolution of the decay times and emission spectra of samples which display multi-exponential decay kinetics. This method does not require any previous knowledge about the decay times or any assumptions about the shape of the emission spectra. We record the wavelength-dependent phase angles and modulations (phase angle and modulation spectra) using a number of light modulation frequencies. The data is analyzed by non-linear least-squares to recover the emission spectra and their associated decay times. Phase and modulation spectra (PM Spec) were used to recover the emission spectra associated with the two decay times of tryptophan at pH = 7 (0.54 and 3.44 ns). The emission spectra of these components are centered at 340 and 355 nm, respectively, with the amplitude of the 0.54 ns component contributing 6% to the total emission. These results are in agreement with previous time-resolved studies by Szabo and Rayner [J. Am. Chem. Soc. 102, 554-563 (1980)]. Control experiments were performed on mixtures of N-acetyl-L-tryptophanamide (NATA) and PPD, which demonstrate our ability to recover the spectra and decay times from two component mixtures. NATA itself displayed a single decay time and only one emission spectrum.  相似文献   

11.
Abstract— The steady state and time resolved fluorescence of the drug and chromosomal staining agent, 4′,6-diamidino-2-phenylindole dihydrochloride, DAPI, was examined under different solvent conditions. In solutions between pH 3 and pH 9 the fluorescence spectral maximum of DAPI was found at 460 nm. The fluorescence decayed with double exponential kinetics, with decay times of 2.86 and 0.144 ns, at all wavelengths below 550 nm. At 550 nm single exponential decay kinetics with a lifetime of 0.153 ns was observed. The fluorescence spectrum could be resolved into two components, the 2.86 ns component having a spectral maximum near 450 nm and the 0.144 ns component having a spectral maximum near 490 nm. The results are rationalized in terms of there being two different configurations of DAPI, one of which undergoes a rapid protonation of the indole ring by proton transfer from the 6-amidinium group in the excited singlet state. The 0.144 ns component is assigned as the fluorescence from the excited state of the protonated indole ring. The results provide an explanation of the fluorescence enhancement in DAPI-nucleic acid complexes.  相似文献   

12.
The effects of solvent pH on spectral properties and fluorescence decay kinetics were investigated in order to characterize the microenvironment of meso-tetraphenylporphine tetrasulphonate (TPPS4) taken up by cells. Steady-state absorption and fluorescence spectra of TPPS4 in buffer solutions of different pH were used to identify a ring protonated species at pH less than or equal to 4. This dictation could also be distinguished from the unprotonated form by its altered fluorescence decay time (3.5 vs. 11.4 ns). In addition, time-resolved spectroscopy gave some evidence of a monocationic species existing at pH 6-9. This was concluded from the occurrence of another component with a decay time of 5 ns. Measurements of the spectral and kinetic properties of the fluorescence emission of single epithelial cells (RR1022) incubated with TPPS4 indicated that the sensitizer was mainly localized in a microenvironment with a pH of 5, a value which occurs intracellularly only within lysosomes. Cells kept in the dark exhibited the characteristic spectra of both the dication and the neutral form. The fluorescence decay showed two components with decay times of 2.6 ns and 10.6 ns. Irradiation of the cells changed the decay times to 4.6 ns and 13.4 ns and the dication fluorescence emission peak vanished, which is in accordance with the results obtained from buffer solutions at pH greater than or equal to 6. Therefore, we deduce that the photodynamic action leads to a rupture of the lysosomes and that the sensitizer is released into the surrounding cytoplasm.  相似文献   

13.
The time evolution of the luminescence of the colored form of a furylfulgide dispersed at various concentrations in a poly(methyl methacrylate) film was measured as a function of the luminescence photon energy. The observed decay time of the luminescence is about 1–2 ns and one order of magnitude shorter than the radiative lifetime (14 ns) estimated from the absorption intensity. The decay time is independent of temperature below 77 K. These results suggest that the non-radiative tunneling process from the excited state to the ground state is responsible for the decay.  相似文献   

14.
The ultrafast dissociation dynamics of NO2 molecules was investigated by femtosecond laser pump-probe mass spectra and ion images. The results show that the kinetic energy release of NO+ ions has two components, 0.05 eV and 0.25 eV, and the possible dissociation channels have been assigned. The channel resolved transient measurement of NO+ provides a method to disentangle the contribution of ultrafast dissociation pathways, and the transient curvesof NO+ ions at different kinetic energy release are fitted by a biexponential function. The fast component with a decay time of 0.25 ps is generated from the evolution of Rydberg states. The slow component is generated from two competitive channels, one of the channel is absorbing one 400 nm photon to the excited state A2B2, which has a decay time of 30.0 ps, and the other slow channel is absorbing three 400 nm photons to valence type Rydberg states which have a decay time less than 7.2 ps. The channel and time resolved experiment present the potential of sorting out the complex ultrafast dissociation dynamics of molecules.  相似文献   

15.
The time-resolved fluorescence spectra of the main arterial fluorescent compounds were retrieved using a new algorithm based on the Laguerre expansion of kernels technique. Samples of elastin, collagen and cholesterol were excited with a pulsed nitrogen laser and the emission was measured at 29 discrete wavelengths between 370 and 510 nm. The expansion of the fluorescence impulse response function on the Laguerre basis of functions was optimized to reproduce the observed fluorescence emission. Collagen lifetime (5.3 ns at 390 nm) was substantially larger than that of elastin (2.3 ns) and cholesterol (1.3 ns). Two decay components were identified in the emission decay of the compounds. For collagen, the decay components were markedly wavelength dependent and hydration dependent such that the emission decay became shorter at higher emission wavelengths and with hydration. The decay characteristics of elastin and cholesterol were relatively unchanged with wavelength and with hydration. The observed variations in the time-resolved spectra of elastin, collagen and cholesterol were consistent with the existence of several fluorophores with different emission characteristics. Because the compounds are present in different proportions in healthy and atherosclerotic arterial walls, characteristic differences in their time-resolved emission spectra could be exploited to assess optically the severity of atherosclerotic lesions.  相似文献   

16.
N-ethylpyrrole is one of ethyl-substituted derivatives of pyrrole and its excited-state decay dynamics has never been explored. In this work, we investigate ultrafast decay dynamics of N-ethylpyrrole excited to the S1 electronic state using a femtosecond time-resolved photoelectron imaging method. Two pump wavelengths of 241.9 and 237.7 nm are employed. At 241.9 nm, three time constants, 5.0±0.7 ps, 66.4±15.6 ps and 1.3±0.1 ns, are derived. For 237.7 nm, two time constants of 2.1±0.1 ps and 13.1±1.2 ps are derived. We assign all these time constants to be associated with different vibrational states in the S1 state. The possible decay mechanisms of different S1 vibrational states are briefly discussed.  相似文献   

17.
Low-energy secondary electrons are the most abundant radiolysis species which are thought to be able to attach to and damage DNA via formation and decay of localized molecular resonances involving DNA components. In this study, we analyze the consequences of low-energy electron impact on the ability of DNA to hybridize (i.e., to form the duplex). Specifically, single-stranded thymine DNA oligomers tethered to a gold surface are irradiated with very low-energy electrons (E = 3 eV, which is below the 7.5 eV ionization threshold of DNA) and subsequently exposed to a dye-marked complementary strand to quantify by a fluorescence method the electron induced damage. The damage to (dT)25 oligomers is detected at quite low electron doses with only about 300 electrons per oligomer being sufficient to completely preclude its hybridization. In the microarray format, the method can be used for a rapid screening of the sequence dependence of the DNA-electron interaction. We also show for the first time that the DNA reactions at surfaces can be imaged by secondary electron (SE) emission with both high analytical and spatial sensitivity. The SE micrographs indicate that strand breaks induced by the electrons play a significant role in the reaction mechanism.  相似文献   

18.
Thienoguanosine (thG) is an isomorphic analogue of guanosine with promising potentialities as fluorescent DNA label. As a free probe in protic solvents, thG exists in two tautomeric forms, identified as the H1, being the only one observed in nonprotic solvents, and H3 keto–amino tautomers. We herein investigate the photophysics of thG in solvents of different polarity, from water to dioxane, by combining time-resolved fluorescence with PCM/TD-DFT and CASSCF calculations. Fluorescence lifetimes of 14.5–20.5 and 7–13 ns were observed for the H1 and H3 tautomers, respectively, in the tested solvents. In methanol and ethanol, an additional fluorescent decay lifetime (≈3 ns) at the blue emission side (λ≈430 nm) as well as a 0.5 ns component with negative amplitude at the red edge of the spectrum, typical of an excited-state reaction, were observed. Our computational analysis explains the solvent effects observed on the tautomeric equilibrium. The main radiative and nonradiative deactivation routes have been mapped by PCM/TD-DFT calculations in solution and CASSCF in the gas phase. The most easily accessible conical intersection, involving an out-of plane motion of the sulfur atom in the five-membered ring of thG, is separated by a sizeable energy barrier (≥0.4 eV) from the minimum of the spectroscopic state, which explains the large experimental fluorescence quantum yield.  相似文献   

19.
The VUV electronic spectroscopy of acetone studied by synchrotron radiation   总被引:1,自引:0,他引:1  
The electronic state spectroscopy of acetone (CH3)2CO has been investigated using high-resolution VUV photoabsorption spectroscopy in the energy range 3.7-10.8 eV. New vibronic structure has been observed, notably in the low energy absorption band assigned to the 1(1)A(1) --> 1(1)A2 (ny --> pi*) transition. The local absorption maximum at 7.85 eV has been tentatively attributed to the 4(1)A1 (pi --> pi*) transition. Six Rydberg series converging to the lowest ionisation energy (9.708 eV) have been assigned as well as a newly-resolved ns Rydberg series converging to the first ionic excited state (12.590 eV). Rydberg orbitals of each series have been classified according to the magnitude of the quantum defect (delta) and are extended to higher quantum numbers than in the previous analyses.  相似文献   

20.
We investigate the effect of broken conjugation on the excited state dynamics of excimers in cyano-substituted phenylene-vinylene polymers. We compare previous studies on the well-characterized poly(2,5,2',5'-tetrahexyloxy-8,7'-dicyano-di-p-phenylene vinylene) (CN-PPV) with poly[oxa-1,4-phenylene-1,2-(1-cyano)-ethenylene-2,5-dioctyloxy-1,4-phenylene-1,2-(2-cyano)-ethenylene-1,4-phenylene] (CN-ether-PPV), in which the conjugation is disrupted by the insertion of an oxygen atom within the polymer backbone. Despite the broken conjugation, the spectroscopic behavior of the two materials is similar, indicating that the cyano group dominates the photophysics in these materials. The emission in CN-ether-PPV is due to a single-chain exciton in solution and due to an interchain excimer in thin film, as previously reported for CN-PPV; however, the excimer absorption and emission in thin film are blueshifted by approximately 0.2 eV relative to CN-PPV, implying that the excimer in CN-ether-PPV is less stable. Furthermore, substitution of an ether group along the chain results in decay times in both solution and film that are twice as long than in CN-PPV due to the broken conjugation which restricts the exciton within a conjugation segment and reduces its access to internal quenching sites. These properties result in a decay time of 14 ns for CN-ether-PPV film, one of the longest decay times observed in a conjugated polymer film. The long lifetime indicates a large exciton diffusion length, making these species particularly vulnerable to quenching by other materials. This work has implications for the design of conjugated polymers for efficient optoelectronic devices, such as photovoltaics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号