首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

2.
《Electroanalysis》2003,15(21):1693-1698
The voltammetric behaviors of uric acid (UA) and L ‐ascorbic acid (L ‐AA) were studied at well‐aligned carbon nanotube electrode. Compared to glassy carbon, carbon nanotube electrode catalyzes oxidation of UA and L ‐AA, reducing the overpotentials by about 0.028 V and 0.416 V, respectively. Based on its differential catalytic function toward the oxidation of UA and L ‐AA, the carbon nanotube electrode resolved the overlapping voltammetric response of UA and L ‐AA into two well‐defined voltammetric peaks in applying both cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which can be used for a selective determination of UA in the presence of L ‐AA. The peak current obtained from DPV was linearly dependent on the UA concentration in the range of 0.2 μM to 80 μM with a correlation coefficient of 0.997. The detection limit (3δ) for UA was found to be 0.1 μM. Finally, the carbon nanotube electrode was successfully demonstrated as a electrochemical sensor to the determination of UA in human urine samples by simple dilution without further pretreatment.  相似文献   

3.
《Electroanalysis》2004,16(23):1977-1983
2,2‐bis(3‐Amino‐4‐hydroxyphenyl)hexafluoropropane (BAHHFP) was electro‐polymerized oxidatively on glassy carbon by cyclic voltammetry. The activity of the modified electrode towards ascorbic acid (AA), uric acid (UA) and dopamine (DA) was characterized with cyclic voltammetry and differential puls voltammetry (DPV). The findings showed that the electrode modification drastically suppresses the response of AA and shifts it towards more negative potentials. Simultaneously an enhancement of reaction reversibility is seen for DA and UA. Unusual, selective preconcentration features are observed for DA when the polymer‐modified electrode is polarized at negative potential. In a ternary mixture containing the three analytes studied, three baseline resolved peaks are observed in DPV mode. At physiological pH 7.4, after 5 min preconcentration at ?300 mV, peaks positions were ?0.073, 0.131 and 0.280 V (vs. Ag/AgCl) for AA, DA and UA, respectively. Relative selectivities DA/AA and UA/AA were over 4000 : 1 and 700 : 1, respectively. DA response was linear in the range 0.05–3 μM with sensitivity of 138 μA μM?1 cm?2 and detection limit (3σ) of 5 nM. Sensitive quantification of UA was possible in acidic solution (pH 1.8). Under such conditions a very sharp peak appeared at 630 mV (DPV). The response was linear in the range 0.5–100 μM with sensitivity of 4.67 μA μM?1 cm?2 and detection limit (3σ) of 0.1 μM. Practical utility was illustrated by selective determination of UA in human urine.  相似文献   

4.
A voltammetric method using a poly(1‐methylpyrrole) modified glassy carbon electrode was developed for the quantification of adrenaline. The modified electrode exhibited stable and sensitive current responses towards adrenaline. Compared with a bare GCE, the modified electrode exhibits a remarkable shift of the oxidation potentials of adrenaline in the cathodic direction and a drastic enhancement of the anodic current response. The separation between anodic and cathodic peak potentials (ΔEp) for adrenaline is 30 mV in 0.1 M phosphate buffer solution (PBS) at pH 4.0 at modified glassy carbon electrodes. The linear current response was obtained in the range of 7.5 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.68 × 10?7 M for adrenaline by square wave voltammetry. The poly(1‐methypyrrole)/GCE was also effective to simultaneously determine adrenaline, ascorbic acid and uric acid in a mixture and resolved the overlapping anodic peaks of these three species into three well‐defined voltammetric peaks in cyclic voltammetry. The modified electrode has been successfully applied for the determination of adrenaline in pharmaceuticals. The proposed method showed excellent stability and reproducibility.  相似文献   

5.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

6.
A carbon‐coated iron nanoparticles (CIN, a new style fullerence related nanomaterial) modified glassy carbon electrode (CIN/GCE) has been developed for the determination of uric acid (UA). Electrochemical behaviors of UA on CIN/GCE were explored by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the voltammetric response of UA on CIN/GC was enhanced dramatically because of the strong accumulation effect of CIN and the large working area of the CIN/GC electrode. The parameters including the pH of supporting electrolyte, accumulation potential and time, that govern the analytical performance of UA have been studied and optimized. The DPV signal of UA on CIN/GCE increased linearly with its concentration in the range from 5.0×10?7 to 2.0×10?5 M, with a detection limit of 1.5×10?7 M (S/N=3). The CIN/GCE was used for the determination of UA in samples with satisfactory results. The proposed CIN/GCE electrochemical sensing platform holds great promise for simple, rapid, and accurate detection of UA.  相似文献   

7.
采用电氧化法制备了一种新型γ-氨基丁酸(ABA)修饰的玻碳电极.X射线光电子能谱(XPS)和循环伏安法研究表明,ABA以单分子层状态以C—N键牢固地共价键合在电极表面.该修饰电极对多巴胺(DA)、尿酸(UA)和抗坏血酸(AA)都具有良好的电化学催化特性.在pH=7.0磷酸缓冲溶液中,DA,UA和AA分别于0.45,0.25和0.07V(vs.Ag/AgCl)有一个良好的、独立的阳极方波伏安峰,表明此修饰电极可用于这3种物质的同时测定.与DA,UA和AA的方波伏安峰电流呈线性关系的浓度范围分别为4.0~400,2.0~500和1.0~600μmol/L,检测限(3δ)分别为1.6,1.2和0.8μmol/L.该修饰电极具有良好的灵敏度、选择性和稳定性,并具有抗污染能力.  相似文献   

8.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

9.
Poly(pyridine‐3‐boronic acid) (PPBA)/multiwalled carbon nanotubes (MWCNTs) composite modified glassy carbon electrode (GCE) was used for the simultaneous determination of ascorbic acid (AA), 3,4‐dihydroxyphenylacetic acid (DOPAC) and uric acid (UA). The anodic peaks for AA, DOPAC and UA at the PPBA/MWCNTs/GCE were well resolved in phosphate buffer solution (pH 7.4). The electrooxidation of AA, DOPAC and UA in the mixture solution was investigated. The peak currents increase with their concentrations increasing. The detection limits (S/N=3) of AA, DOPAC and UA are 5 µM, 3 µM and 0.6 µM, respectively.  相似文献   

10.
Electrochemically polymerized luminol film on a glassy carbon electrode (GCE) surface has been used as a sensor for selective detection of uric acid (UA) in the presence of ascorbic acid (AA) and dopamine (DA). Cyclic voltammetry was used to evaluate the electrochemical properties of the poly(luminol) film modified electrode. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used for surface characterizations. The bare GCE failed to distinguish the oxidation peaks of AA, DA and UA in phosphate buffer solution (pH 7.0), while the poly(luminol) modified electrode could separate them efficiently. In differential pulse voltammetric (DPV) measurements, the modified GCE could separate AA and DA signals from UA, allowing the selective determination of UA. Using DPV, the linear range (3.0×10?5 to 1.0×10?3 M) and the detection limit (2.0×10?6 M) were estimated for measurement of UA in physiological condition. The applicability of the prepared electrode was demonstrated by measuring UA in human urine samples.  相似文献   

11.
A composition of multiwalled carbon nanotube (MWCNT), Nafion and cobalt(II)‐5‐nitrosalophen (CoNSal) is applied for the modification of carbon‐paste electrode (CPE). The pretreated MWCNT is well dispersed in the alcoholic solution of Nafion under the ultrasonic agitation, and the resulted suspension is used as modifier (with 10% w/w) in the matrix of the paste electrode. The prepared electrode further modified by addition of 3 wt% of CoNSal. The resulted modified electrode is used as a sensitive voltammetric sensor for simultaneous determination of uric acid (UA) and ascorbic acid (AA). The electrode showed efficient electrocatalytic activity in lowering the anodic overpotentials and enhancement of the anodic currents. This electrode is able to completely resolve the voltammetric response of UA and AA. The effects of potential sweep rate and pH of the buffer solution on the response of the electrode, toward UA and AA, and the peak resolution is thoroughly investigated by cyclic and differential pulse voltammetry (CV and DPV). The best peak resolution for these compounds using the modified electrode is obtained in solutions with pH 4. The ΔEp for UA and AA in these methods is about 315 mV, which is considerably better than previous reports for these compounds. A linear dynamic range of 1×10?7 to 1×10?4 M with a detection limit of 6×10?8 M is resulted for UA in buffered solutions with pH 4.0. The voltammetric response characteristics for AA are obtained as, the linear range of 5×10?7 to 1×10?4 M with the detection limit of 1×10?7 M. The voltammetric detection system was very stable and the reproducibility of the electrode response, based on the six measurements during one month, was less than 3.5% for the slope of the calibration curves of UA and AA. The prepared modified electrode is successfully applied for the determination of AA and UA in mixture samples and reasonable accuracies are resulted.  相似文献   

12.
《Electroanalysis》2002,14(23):1615-1620
Electrochemically modified glassy carbon electrode (GCE) was used to study the electrochemical oxidation and detection of denatured single‐stranded (ss) DNA by means of adsorptive stripping voltammetry. The modification of GCE, by electrochemical oxidation at +1.75 V (vs.SCE) for 10 min and cyclic sweep between +0.3 V and ?1.3 V for 20 cycles in pH 5.0 phosphate buffer, results in 100‐fold improvement in sensitivity for ssDNA detection. We speculated that the modified GCE has a high affinity to single‐stranded DNA through hydrogen bond (specific static adsorption). Single‐stranded DNA can accumulate at the GCE surface at open circuit and produce a well‐defined oxidation peak corresponding to the guanine residues at about +0.80 V in pH 5.0 phosphate buffer, while the native DNA gives no signal under the same condition. The peak currents are proportional to the ssDNA concentration in the range of 0–18.0 μg mL?1. The detection limit of denatured ssDNA is ca. 0.2 μg mL?1 when the accumulation time is 8 min at open circuit. The accumulation mechanism of ssDNA on the modified GCE was discussed.  相似文献   

13.
聚结晶紫薄膜修饰电极测定尿酸   总被引:10,自引:3,他引:10  
利用循环伏安法制备了聚结晶紫薄膜修饰电极(PCVE) ,详细研究了该修饰电极对生物分子尿酸 (UA)的电催化作用。结果表明 ,PCVE对UA具有较强的电催化作用 ,并且对抗坏血酸(AA)具有较强的抗干扰作用 ,允许高达1000倍以上AA存在而不干扰痕量UA的测定。将PCVE结合差分脉冲伏安(DPV)技术 ,对UA的检测线性范围为5.0×10 -7~5.0×10 -5mol/L,检出限达7.5×10 -8mol/L。将该法用于尿液中尿酸的测定 ,取得满意结果  相似文献   

14.
In this study, interaction of tetracycline (TC) and DNA in the Britton? Robinson buffer solution (BR) was studied by cyclic voltammetry. The experimental results reveal that TC can bind strongly to DNA and the association constant and binding number between TC and DNA was obtained. Then DNA was immobilized on a glassy carbon electrode by UV‐irradiation. Through this process, water‐soluble DNA was converted into insoluble materials, and a stable DNA film was formed on the electrode. The electrochemical oxidation behavior of TC was studied at UV‐irradiated DNA film modified glassy carbon electrode (UV‐DNA‐GCE). The response of modified electrode was optimized with respect to pH, accumulation time, ionic strength, drug concentration and other variables. TC at the surface of modified electrode showed a linear dynamic range of 0.30–90.00 µM and a detection limit of 0.27 µM. To demonstrate the applicability of the modified electrode, it was used for the analysis of real samples such as pharmaceutical formulations and milk.  相似文献   

15.
《Electroanalysis》2005,17(24):2281-2286
A poly(3,4‐ethylenedioxythiophene) (PEDOT) modified glassy carbon electrode (GCE) was used to determine uric acid in the presence of ascorbic acid at physiological pH facilitating a peak potential separation of ascorbic acid and uric acid oxidation (ca. 365 mV), which is the largest value reported so far in the literature. Also, an analytical protocol involving differential pulse voltammetry has been developed using a microchip electrode for the determination of uric acid in the concentration range of 1 to 20 μM in presence of excess of ascorbic acid.  相似文献   

16.
In this paper, the use of a carbon paste electrode (CPE) modified by (E)‐3‐((2‐(2,4‐dinitrophenyl)hydrazono)methyl)benzene‐1,2‐diol (DHB) and carbon nanotubes (CNTs) for the determination of glutathione (GSH), uric acid (UA) and penicillamine (PA) is described. Initially, cyclic voltammetry was used to investigate the redox properties of the modified electrode in phosphate buffer. Next, the electrocatalytic oxidation of GSH via EC′ mechanism at the modified electrode was described. At the optimum pH of 7.0, the oxidation of GSH occurs at a potential that is 530 mV less positive than that of an unmodified carbon paste electrode. The values of the diffusion coefficient (D=2.5×10?6 cm2 s?1) and the catalytic rate constant (k=1.7×103 M?1 s?1) were calculated for GSH, using chronoamperometry. Based on differential pulse voltammetry, the oxidation of GSH exhibited a dynamic range between 0.4 and 700.0 µM and a detection limit (3σ) of 70.0 nM. Also, simultaneous determination of GSH, UA and PA was described at the modified electrode. Finally, this method was used for the determination of these substances in synthetic solutions and blood serum samples.  相似文献   

17.
A multiwalled carbon nanotube/chitosan modified glassy carbon electrode (MWCNTs‐CHT/GCE) has been used for simultaneous determination of paracetamol (PAR) and uric acid (UA). The measurements were carried out using differential pulse voltammetry (DPV), cyclic voltammetry (CV) and chronoamperometry (CA). DPV measurements showed a linear relationship between oxidation peak current and concentration of PAR and UA in phosphate buffer (pH 7) over the concentration range 2 µM to 250 µM, and 10 µM to 400 µM, respectively. The analytical performance of this sensor has been evaluated for detection of PAR and UA in human serum and human urine with satisfactory results.  相似文献   

18.
《Electroanalysis》2017,29(4):1069-1080
In this study, we introduce a very sensitive and selective method for the differential pulse anodic stripping determination of Sb(III) ion on the over‐oxidized poly(phenol red) modified glassy carbon electrode (PPhRedox/GCE) in 0.1 mol L‐1 HCl medium. The formation of both poly(phenol red) and over‐oxidized poly(phenol red) film on the electrode surfaces were characterized by electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy and scanning electron microscopy techniques. An anodic stripping peak of Sb(III) was observed at 0.015 V on the PPhRedox/GCE. Higher anodic stripping peak current of Sb(III) was obtained at PPhRedox/GCE compared with both bare GCE and poly(phenol red) film modified GCE (PPhRed/GCE). The calibration graph consisted of two linear segments of 0.044 ‐ 1.218 μg L−1 and 3.40 – 18.26 μg L−1 with a detection limit of 0.0075 μg L−1. The proposed over‐oxidized polymer film modified electrode was applied successfully for the analysis of antimony in different spiked water samples. Spiked recoveries for water samples were obtained in the range of 93.0–103.0%. The accuracy of the method was also verified through the analysis of standard reference materials (SCP SCIENCE‐EnviroMAT™ EP−L‐2).  相似文献   

19.
Increasing attention has been paid to layered double hydroxide (LDH) film modified electrode attributing to its desirable properties for fabrication of electrochemical sensor. In this paper, the Zn‐Al LDH film modified glassy carbon electrode was characterized by electrochemical methods. The enhanced electrocatalytic currents and well‐separated potentials for epinephrine (EP) and uric acid (UA) were observed at the as‐prepared electrode. Under selected condition, the differential pulse voltammetry response of the modified electrode to EP (or UA) shows a linear concentration range of 0.5 μM to 0.3 mM (or 2 μM to 0.4 mM) in the presence of 10.0 μM UA (or 20.0 μM EP). At a signal‐to‐noise ratio of 3, the calculated limits of detection are 0.13 μM and 0.66 μM, respectively. The proposed method has been performed to successfully detect EP and UA in analysis of real samples, such as in EP injection solution and human urine samples.  相似文献   

20.
The nanocomposite (denoted as GR‐AuNPs‐CD‐CS) of graphene (GR), gold nanoparticles (AuNPs), chitosan (CS) and β‐cyclodextrin (β‐CD) was prepared to modify a glassy carbon electrode. The as‐modified electrode was explored for the ultrasensitive detection of dopamine (DA) and uric acid (UA). The modified electrode demonstrated linearly increased current response in the concentration range of 0.1–120 µm for DA and 0.05–70 µm for UA, with so far the best detection limit for DA and UA. Good stability and repeatability were further demonstrated for the as‐made sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号