首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
From the fruit coats of the medicinal plant Madhuca latifolia were isolated three new compounds, the triterpenoid madhucic acid (=3β‐(octanoyloxy)‐11‐oxoolean‐12‐en‐28‐oic acid; 1 ), the untypical isoflavone madhushazone (=9‐methoxy‐7‐(2,3,6‐trimethoxyphenyl)‐[1,3]dioxolo[4,5‐g][1]benzopyran‐8(8H)‐one; 2 ), and a bis(isoflavone) named madhusalmone (=5,14‐dimethoxy‐3,12‐bis(3,4,5‐trimethoxyphenyl)‐1,6,8,10,15,17‐hexaoxanaphtho[2′,3′: 6,7]cyclodeca[1,2‐b]naphthalene‐4,13(4H,13H)‐dione; 3 ), as well as eight known constituents, and their structures were elucidated by spectral analysis, including 2D‐NMR techniques.  相似文献   

2.
A novel dimeric lignan, bispicropodophyllin glucoside ( 1 ) and a highly oxygenated new withanolide, coagulin S ( 2 ) were isolated from the ethanolic extract of Withania coagulans. The structures were established on the basis of the spectroscopic data and have been identified as (5S*,5aR*,8aR*,9S*,15S*,15aS*,18aS*,19S*)‐9,19‐di‐β‐D ‐glucopyranosyl‐5,8a,9,15,15a,18,18a,19‐octahydro‐5,15‐bis(3,4,5‐trimethoxyphenyl)bis([1,3]dioxolo[4′,5′:6,7]naphtho)[2,3‐c:2,3‐h][1,6]dioxecin‐6,16(5aH,8H)‐dione ( 1 ) and (20S*,22R*)‐5α,6β,14α,15α,17β,20,27‐heptahydroxy‐1‐oxowith‐24‐enolide ( 2 ), respectively.  相似文献   

3.
A novel cyclobutane‐type norlignan, peperotetraphin (=methyl rel‐(1R,2S,3S)‐2,3‐bis(7‐methoxy‐1,3‐benzodioxol‐5‐yl)cyclobutanecarboxylate; 1 ), and a novel phenylpropanoid, i.e., methyl (2E)‐3‐(7‐methoxy‐1,3‐benzodioxol‐5‐yl)prop‐2‐enoate ( 2 ), along with three known compounds, α‐asarone (=1,2,4‐trimethoxy‐5‐[(1E)‐prop‐1‐en‐1‐yl]benzene), vanillic acid (=4‐hydroxy‐3‐methoxybenzoic acid), and veratric acid (=3,4‐dimethoxybenzoic acid), were isolated from the EtOH extract of the whole plant of Peperomia tetraphylla. Their structures were determined by spectroscopic methods, especially 1D‐ and 2D‐NMR techniques. This is the first report of naturally occurring cyclobutane‐type norlignans.  相似文献   

4.
A new pyridone alkaloid, 5,6‐dihydro‐5‐hydroxy‐1H‐pyridin‐2‐one ( 1 ), and a new ester, sintenin (=3‐(3,4‐dimethoxyphenyl)propyl 3‐(3,4‐dimethoxyphenyl)propanoate 2 ), together with three known compounds, 5,6‐dihydro‐1H‐pyridin‐2‐one ( 3 ), d‐sesamin (=5,5′‐(3a,4,6,6a‐tetrahydro‐1H,3H‐furo[3,4‐c]furan‐1,4‐diyl)bis[1,3‐benzodioxole]; 4 ), and (E)‐phytol (=3,7,11,15‐tetramethylhexadec‐2‐en‐1‐ol; 5 ) have been isolated from the whole plant of Piper sintenense. The structures of the two new compounds were determined through spectral analyses. Among twenty isolates obtained so far, four compounds exhibited effective cytotoxicities against P‐388, HT‐29, or A549 cell lines in vitro.  相似文献   

5.
Chemical examination of the AcOEt extract of the leaves and twigs of Excoecaria cochinchinensis Lour . collected from Xishuangbanna resulted in the isolation of the three new highly oxygenated diterpenoids 1 – 3 . The structures of the new diterpenoids were elucidated by a study of their physical and spectra data as (2β,3β,5α,6α)‐2,3‐bis(acetyloxy)‐8,13‐epoxy‐6,9‐dihydroxylabd‐14‐en‐11‐one (=excolabdone A; 1 ), (1α,5α,6β,7β)‐1,6‐bis(acetyloxy)‐8,13‐epoxy‐7,9‐dihydroxylabd‐14‐en‐11‐one (=excolabdone B; 2 ), and (1α,5α,6β,7β)‐6‐(acetyloxy)‐8,13‐epoxy‐1,7,9‐trihydroxylabd‐14‐en‐11‐one (=excolabdone C; 3 ).  相似文献   

6.
The reaction of the 4‐hydroxyquinoline‐3‐carboxylate 6 with pentaerythritol tribromide gave the 1,1′‐(2‐methylenepropane‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 11 , whose reaction with bromine afforded the 1,1′‐(2‐bromo‐2‐bromomethylpropane‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 12 . Compound 12 was transformed into the (Z)‐1,1′‐(2‐acetoxymethylpropene‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 13 or (E)‐1,1′‐[2‐(imidazol‐1‐ylmethyl)propene‐1,3‐diyl]di(4‐quinolone‐3‐carboxylate) 14 . Hydrolysis of the dimer (Z)‐ 13 or (E)‐ 14 with potassium hydroxide provided the (E)‐1,1′‐(2‐hydroxymethylpropene‐1,3‐diyl)di(4‐quinolone‐3‐carboxylic acid) 15 or (Z)‐1,1′‐[2‐(imidazol‐1‐ylmethyl)propene‐1,3‐diyl]di(4‐quinolone‐3‐carboxylic acid) 16 , respectively. The nuclear Overhauser effect (NOE) spectral data supported that those hydrolysis resulted in the geometrical conversion of (Z)‐ 13 into (E)‐ 15 or (E)‐ 14 into (Z)‐ 16 .  相似文献   

7.
Catalytic fluorination/chlorination competition experiments of β‐keto ester 5 were used to assess the relative fluorinating activity of various electrophilic N? F reagents (containing an N? F bond). Thus, in the halogenation reactions catalyzed by the [Ti(TADDOLato)] complex 1 (=bis(acetonitrile)dichloro[(4R,5R)‐2,2‐dimethyl‐α,α,α′,α′‐tetra(naphthalen‐1‐yl)‐1,3‐dioxolane‐4,5‐dimethanolato(2?)‐κO,κO′]titanium), the activity range of a series of commercially available reagents spans more than two orders of magnitude. SelectfluorTM (=1‐(chloromethyl)‐4‐fluoro‐1,4‐diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate); 9 ; also called F‐TEDA; TEDA=triethylenediamine) reacts more than 100 times faster than 1‐fluoropyridinium tetrafluoroborate.  相似文献   

8.
Two new natural products, i.e., 1‐O,2‐O‐[(1S,2S)‐1‐(3‐acetyl‐2,4,6‐trihydroxyphenyl)‐3‐hydroxypropane‐1,3‐diyl]‐β‐D ‐glucopyranose (=tomentoside I; 1 ) and (3β)‐3‐(acetyloxy)ferruginol 12‐[6‐O‐(4‐hydroxy‐3,5‐dimethoxybenzoyl)‐β‐D ‐glucopyranoside] (=tomentoside II; 2 ), were isolated from the EtOH extract of the root of Anemone tomentosa, together with five known compounds. Their structures were characterized by means of spectroscopic methods, especially by 1H‐, 13C‐, and 2D‐NMR and HR‐MS, as well as by chemical methods and comparison with literature data.  相似文献   

9.
(Dichloroiodo)toluene (=dichloro(4‐methylphenyl)iodine; 2 ) was found to be a suitable chlorinating agent in the catalytic asymmetric chlorination of β‐keto esters 3 catalyzed by the [Ti(TADDOLato)] complex 1 (=bis(acetonitrile)dichloro[(4R,5R)‐2,2‐dimethyl‐α,α,α′,α′‐tetra(naphthalen‐1‐yl)‐1,3‐dioxolane‐4,5‐dimethanolato(2?)‐κO,κO′]titanium), whereby α‐chlorinated products were obtained in moderate to good yields and enantioselectivities of up to 71% (Scheme 2, Table 2). The enantioselectivity of the reaction shows a remarkable temperature dependence, the maximum selectivity being obtained at ca. 50°.  相似文献   

10.
Two new polyoxygenated triterpenoids, stachlic acid A (= (2α,3β)‐2,3,23,29‐tetrahydroxyolean‐12‐en‐28‐oic acid; 1 ) and stachlic acid B (= (2α,3α)‐2,29‐dihydroxy‐3,23‐[(1,1‐dimethylmethylene)dioxy]olean‐12‐ene‐28‐oic acid; 2 ), were isolated from Stachyurus himalaicus var. himalaicus. Their structures were established by means of extensive spectroscopic studies and chemical evidence. The purified product 1 was found to have moderate in vitro cytotoxic activity against human Hela cells.  相似文献   

11.
1,1′‐Bis(trimethylsilylamino)ferrocene reacts with trimethyl‐ and triethylgallium to give the μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetraalkyldigallanes. These were converted into the 1,3‐bis(trimethylsilyl)‐2‐alkyl‐2‐pyridine‐1,3,2‐diazagalla‐[3]ferrocenophanes, of which the ethyl derivative was characterized by X‐ray structural analysis. Treatment of gallium trichloride with N,N′‐dilithio‐1,1′‐bis(trimethylsilylamino)ferrocene affords μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetrachlorodigallane along with bis(trimethylsilyl)‐2,2‐dichloro‐1‐aza‐3‐azonia‐2‐gallata‐[3]ferrocenophane as a side product, and both were structurally characterized by X‐ray analysis. The solution‐state structures of the new gallium compounds and aspects of their molecular dynamics in solution were studied by NMR spectroscopy (1H, 13C, 29Si NMR).  相似文献   

12.
Four new 9,10‐secocycloartane (=9,19‐cyclo‐9,10‐secolanostane) triterpenoidal saponins, named huangqiyenins G–J ( 1 – 4 , resp.), were isolated from Astragalus membranaceus Bunge leaves. The acid hydrolysis of 1 – 4 with 1M aqueous HCl yielded D ‐glucose, which was identified by GC analysis after treatment with L ‐cysteine methyl ester hydrochloride. The structures of 1 – 4 were established by detailed spectroscopic analysis as (3β,6α,10α,16β,24E)‐3,6‐bis(acetyloxy)‐10,16‐dihydroxy‐12‐oxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 1 ), (3β,6a,10α,24E)‐3,6‐bis(acetyloxy)‐10‐hydroxy‐12,16‐dioxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 2 ), (3β,6α,9α,10α,16β,24E)‐3,6‐bis(acetyloxy)‐9,10,16‐trihydroxy‐9,19‐cyclo‐9,10‐secolanosta‐11,24‐dien‐26‐yl β‐D ‐glucopyranoside ( 3 ), and (3β,6α,10α,24E)‐3,6‐bis(acetyloxy)‐10‐hydroxy‐16‐oxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 4 ).  相似文献   

13.
A new triterpene, (3β,12β)‐taraxast‐20(30)‐ene‐3,12‐diol (=(3β,12β,18α,19α)‐urs‐20(30)‐ene‐3,12‐diol; 1 ), together with the known compounds ursolic acid, α‐amyrin, β‐amyrin, (2α,3β)‐2,3‐dihydroxyursa‐5,12‐dien‐28‐oic acid, (2α,3β)‐2,3,23‐trihydroxyurs‐12‐en‐28‐oic acid, (2S,3S,4R,8Z)‐1‐O‐(β‐D ‐glucopyranosyl)‐2‐{[(2R)‐2‐hydroxydocosanoyl]amino}octadec‐8‐ene‐1,3,4‐triol, and (2S,3S,4R,8Z)‐1‐O‐(β‐D ‐glucopyranosyl)‐2‐[(palmitoyl)amino]octadec‐8‐ene‐1,3,4‐triol, and quercetin 3‐(β‐D ‐glucopyranoside) were isolated from the leaves of Craibiodendron yunnanense. Their structures were established on the basis of spectral evidence. The last four compounds were identified for the first time in this plant.  相似文献   

14.
Reactions of SnCl2 with the complexes cis‐[PtCl2(P2)] (P2=dppf (1,1′‐bis(diphenylphosphino)ferrocene), dppp (1,3‐bis(diphenylphosphino)propane=1,1′‐(propane‐1,3‐diyl)bis[1,1‐diphenylphosphine]), dppb (1,4‐bis(diphenylphosphino)butane=1,1′‐(butane‐1,4‐diyl)bis[1,1‐diphenylphosphine]), and dpppe (1,5‐bis(diphenylphosphino)pentane=1,1′‐(pentane‐1,5‐diyl)bis[1,1‐diphenylphosphine])) resulted in the insertion of SnCl2 into the Pt? Cl bond to afford the cis‐[PtCl(SnCl3)(P2)] complexes. However, the reaction of the complexes cis‐[PtCl2(P2)] (P2=dppf, dppm (bis(diphenylphosphino)methane=1,1′‐methylenebis[1,1‐diphenylphosphine]), dppe (1,2‐bis(diphenylphosphino)ethane=1,1′‐(ethane‐1,2‐diyl)bis[1,1‐diphenylphosphine]), dppp, dppb, and dpppe; P=Ph3P and (MeO)3P) with SnX2 (X=Br or I) resulted in the halogen exchange to yield the complexes [PtX2(P2)]. In contrast, treatment of cis‐[PtBr2(dppm)] with SnBr2 resulted in the insertion of SnBr2 into the Pt? Br bond to form cis‐[Pt(SnBr3)2(dppm)], and this product was in equilibrium with the starting complex cis‐[PtBr2(dppm)]. Moreover, the reaction of cis‐[PtCl2(dppb)] with a mixture SnCl2/SnI2 in a 2 : 1 mol ratio resulted in the formation of cis‐[PtI2(dppb)] as a consequence of the selective halogen‐exchange reaction. 31P‐NMR Data for all complexes are reported, and a correlation between the chemical shifts and the coupling constants was established for mono‐ and bis(trichlorostannyl)platinum complexes. The effect of the alkane chain length of the ligand and SnII halide is described.  相似文献   

15.
Two new iridoid glycosides, teneoside A (=(2aR,5S)‐5‐[(β‐D ‐glucopyranosyl)oxy]‐2a,4a,5,7b‐tetrahydro‐4‐{[(α‐L ‐rhamnopyranosyl)oxy]methyl}‐1H‐2,6‐dioxacyclopenta[cd]inden‐1‐one; 1 ) and teneoside B (=methyl (1S,5R)‐1‐[(β‐D ‐glucopyranosyl)oxy]‐1,4a,5,7a‐tetrahydro‐5‐hydroxy‐7‐{[(α‐L ‐rhamnopyranosyl)oxy]methyl}cyclopenta[c]pyran‐4‐carboxylate; 2 ), were isolated from the roots of Hedyotis tenelliflora Blume , along with two known compounds, deacetylasperuloside ( 3 ) and scandoside methyl ester ( 4 ). Their structures were elucidated by chemical methods (acid hydrolysis) and spectroscopic analyses.  相似文献   

16.
The synthesis of 46 derivatives of (2R,3R,4S)‐2‐(aminomethyl)pyrrolidine‐3,4‐diol is reported (Scheme 1 and Fig. 3), and their inhibitory activities toward α‐mannosidases from jack bean (B) and almonds (A) are evaluated (Table). The most‐potent inhibitors are (2R,3R,4S)‐2‐{[([1,1′‐biphenyl]‐4‐ylmethyl)amino]methyl}pyrrolidine‐3,4‐diol ( 3fs ; IC50(B)=5 μM , Ki=2.5 μM ) and (2R,3R,4S)‐2‐{[(1R)‐2,3‐dihydro‐1H‐inden‐1‐ylamino]methyl}pyrrolidine‐3,4‐diol ( 3fu ; IC50(B)=17 μM , Ki=2.3 μM ). (2S,3R,4S)‐2‐(Aminomethyl)pyrrolidine‐3,4‐diol ( 6 , R?H) and the three 2‐(N‐alkylamino)methyl derivatives 6fh, 6fs , and 6f are prepared (Scheme 2) and found to inhibit also α‐mannosidases from jack bean and almonds (Table). The best inhibitor of these series is (2S,3R,4S)‐2‐{[(2‐thienylmethyl)amino]methyl}pyrrolidine‐3,4‐diol ( 6o ; IC50(B)=105 μM , Ki=40 μM ). As expected (see Fig. 4), diamines 3 with the configuration of α‐D ‐mannosides are better inhibitors of α‐mannosidases than their stereoisomers 6 with the configuration of β‐D ‐mannosides. The results show that an aromatic ring (benzyl, [1,1′‐biphenyl]‐4‐yl, 2‐thienyl) is essential for good inhibitory activity. If the C‐chain that separates the aromatic system from the 2‐(aminomethyl) substituent is longer than a methano group, the inhibitory activity decreases significantly (see Fig. 7). This study shows also that α‐mannosidases from jack bean and from almonds do not recognize substrate mimics that are bulky around the O‐glycosidic bond of the corresponding α‐D ‐mannopyranosides. These observations should be very useful in the design of better α‐mannosidase inhibitors.  相似文献   

17.
Five new steroidal glycosides were isolated from the roots of Balanites aegyptiaca, a widely used African medicinal plant. On the basis of spectroscopic and chemical evidence, their structures were determined as (3β,12α,14β,16β)‐12‐hydroxycholest‐5‐ene‐3,16‐diyl bis(β‐D ‐glucopyranoside) ( 1 ), (3β,20S,22R,25R)‐ and (3β,20S,22R,25S)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurost‐5‐en‐3‐yl β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 2 and 3 , resp.), and (3β,20S,22R,25R)‐ and (3β,20S,22R,25S)‐spirost‐5‐en‐3‐yl β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 4 and 5 , resp.)  相似文献   

18.
Seven new compounds were isolated from the roots of Ligularia dentata, including five bisabolane‐type sesquiterpenoids (bisabolane=1‐(1,5‐dimethylhexyl)‐4‐methylcyclohexane), namely (8β,10α)‐8‐(angeloyloxy)‐5,10‐epoxybisabola‐1,3,5,7(14)‐tetraene‐2,4,11‐triol ( 1 ), (8β,10α)‐8‐(angeloyloxy)‐5,10‐epoxythiazolo[5,4‐a]bisabola‐1,3,5,7(14)‐tetraene‐4,11‐diol ( 2 ), (1α,2α,3β,5α,6β)‐1,5,8‐tris(angeloyloxy)‐10,11‐epoxy‐2,3‐dihydroxybisabol‐7(14)‐en‐4‐one ( 3 ), (1α,2α,3β,5α,6β)‐2,5,8‐tris(angeloyloxy)‐10,11‐epoxy‐1,3‐dihydroxybisabol‐7(14)‐en‐4‐one ( 4 ), and (1α,2β,3β,5α,6β)‐1,8‐bis(angeloyloxy)‐2,3‐epoxy‐5,10‐dihydroxy‐11‐methoxybisabol‐7(14)‐en‐4‐one ( 5 ) (angeloyloxy=[(2Z)‐2‐methyl‐1‐oxobut‐2‐enyl]oxy), and two lactone derivatives, (2α,3β,5α)‐2‐(acetyloxy)‐9‐methoxy‐5‐(methoxycarbonyl)‐2,3‐dimethylheptano‐5‐lactone ( 6 ), and (2β,4β)‐2‐ethyl‐5‐hydroxy‐5‐(methoxycarbonyl)‐4,5‐dimethylpentano‐4‐lactone ( 7 ) (α/β denote relative configurations), together with (2E,4R,5S)‐2‐ethylidene‐5‐(methoxycarbonyl)‐4‐methylhexano‐5‐lactone ( 8 ), a known synthetic compound. Compound 2 is the first sesquiterpenoid derivative containing the uncommon benzothiazole moiety. The structures of 1 – 8 were established by spectroscopic methods, especially 2D‐NMR and MS analyses.  相似文献   

19.
Three new compounds, myrsinoside A (=2,4‐dihydroxy‐6‐methylphenyl β‐D ‐(6′‐galloyl)glucopyranoside; 1 ), myrsinoside B (2,4‐dihydroxy‐6‐methylphenyl β‐D ‐glucopyranoside; 2 ), and (3β,16α,20α)‐3,16,28‐trihydroxyolean‐12‐en‐29‐oic acid 3‐{Oβ‐D ‐glucopyranosyl‐(1→2)‐O‐[β‐D ‐glucopyranosyl‐(1→4)]‐α‐L ‐arabinopyranoside} ( 3 ), along with four known compounds, were isolated from the stems of Myrsine africana L. The structures of these new compounds were elucidated on the basis of spectroscopic analysis, including 1D‐ and 2D‐NMR and ESI‐MS techniques, and chemical methods.  相似文献   

20.
The oxidation of 1‐(3,8‐dimethylazulen‐1‐yl)alkan‐1‐ones 1 with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (=4,5‐dichloro‐3,6‐dioxocyclohexa‐1,4‐diene‐1,2‐dicarbonitrile; DDQ) in acetone/H2O mixtures at room temperature does not only lead to the corresponding azulene‐1‐carboxaldehydes 2 but also, in small amounts, to three further products (Tables 1 and 2). The structures of the additional products 3 – 5 were solved spectroscopically, and that of 3a also by an X‐ray crystal‐structure analysis (Fig. 1). It is demonstrated that the bis(azulenylmethyl)‐substituted DDQ derivatives 5 yield on methanolysis or hydrolysis precursors, which in a cascade of reactions rearrange under loss of HCl into the pentacyclic compounds 3 (Schemes 4 and 7). The found 1,1′‐[carbonylbis(8‐methylazulene‐3,1‐diyl)]bis[ethanones] 4 are the result of further oxidation of the azulene‐1‐carboxaldehydes 2 to the corresponding azulene‐1‐carboxylic acids (Schemes 9 and 10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号