首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An instrumental analysis experiment on the cyclic voltammetry of hexachloroiridate(IV) is described in this paper. The hexachloroiridate(IV)/hexachloroiridate(III) redox couple allows the analytical chemistry student to study the behavior of electrochemically reversible electron transfer with no complications. The cyclic voltammetric response of hexachloroiridate(IV)/hexachloroiridate(III) is compared with the ferricyanide/ ferrocyanide redox couple, which has been known to exhibit quasireversible electron transfer as a result of film formation on the electrode surface. Considerations regarding the stability of the hexachloroiridate(IV) ion in 0.1 M KNO3 are also addressed.  相似文献   

2.
The structural and photoelectrochemical properties of mixed oxide semiconductor films of Bi-Nb-M-O (M = Al, Fe, Ga, In) were studied in order to explore their use as photoanodes in photoelectrochemical cells. These films were prepared on AISI/SAE 304 stainless steel plates by sol–gel dip-coating. The films were characterized by scanning electron microscopy—energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), and their photoelectrochemical properties were studied by open circuit potential (OCP) measurements, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). SEM micrographs show homogeneous and rough films with agglomerates on the surface. EDS analyses show that the films are composed of Bi, Nb, and M, and the agglomerates are mainly composed of Bi. XRD analyses show a predominant crystalline phase of bismuth(III) oxide (Bi2O3) and a secondary phase composed of Bi-M mixed oxides. It is noteworthy that there was no identified niobium-based crystalline phase. XPS results reveal that the films are composed by Bi(III), Nb(V), and M(III). CV results show that the electrochemical behavior is attributed only to the semiconductor films which indicate a good coating of the stainless steel support. OCP measurements show that all the films have n-type semiconductor properties and exhibited photoresponse to the visible light irradiation. LSV results show that the application of a potential higher than +0.1 V enhances the photocurrent which can be attributed to an improved charge carrier separation. The results indicate that these materials can be used in photoelectrochemical cells.  相似文献   

3.
Nickel oxide (NiOx) and polyaniline (PAni) were electrocodeposited from NiSO4 and aniline through cyclic voltammetric scans to afford PAni–NiOx composite film at controlled pH environment. The electrochemical activities of the film were investigated by cyclic voltammetry in 0.1 M NaOH and 0.1 M H2SO4, respectively. Typical redox couples of PAni in 0.1 M H2SO4 appeared at approximately 0.2 and 0.4 V vs. saturated calomel electrode (SCE); Ni(II)/Ni(III) redox couple was observed at approximately 0.4 V vs. SCE in 0.1 M NaOH. The morphologies and elemental components of the films were inspected by scanning electron microscopy and energy dispersive X-ray diffraction. The stability of nickel oxide in the films was found to be enhanced against acidic environments. Electrochemical catalytic behavior of NiOx within the composite film was conserved and demonstrated by catalytic oxidation of methanol and ethanol.  相似文献   

4.
Abstract

Acid-base equilibrium of the “one-face”-hindered sulfonated porphyrin, α5,15-[2,2′(dodecamethyleneoxy),(5-sulfonato)diphenyl]-10,20-bis(2-hydroxy,5-sulfonatophenyl)porphyrinato iron(III), has been studied by paramagnetic 1H NMR. The isotropically shifted signals change in a fast exchange regime on the NMR time-scale. 1H longitudinal relaxation times and temperature dependence of the chemical shifts were measured and analyzed. The electronic structure of hydroxo specie is characteristic of a six- or five-coordinate high-spin iron(III) porphyrin with an S = 5/2 ground state. The 1H NMR titration allowed determination of the acidity constant, pKa 6.2 (0.1 M KNO3, 25 °C). In addition, we also report the interaction between the monohydroxo iron(III) porphyrin and the bovine serum albumin protein. From a 1H NMR titration, we have determined the affinity apparent constant, log Kap 3.2 (pH 7, KNO3 0.1 M, 25 °C). The formation of superstructured iron porphyrin-albumin protein adduct was confirmed by electronic absorption spectroscopy and electron paramagnetic resonance.  相似文献   

5.
pH-metric studies show that one mole of Eu(III) interacts with three molecules of each of juglone, plumbagin, lawsone and lapachol in solution. The stability and thermodynamics of these systems (50% aqueous acetone, 0.1 M KNO3 ionic strength) are discussed and explained.  相似文献   

6.
An electrochemical procedure of anodic deposition of cobalt oxyhydroxide film on a glassy carbon substrate in an alkaline medium (i.e. pH 11.6) is described. The electrodeposited film was obtained either by voltage cycling or by potentiostatic conditions using non-deaerated 0.1 M Na2CO3 solutions containing 40 mM tartrate ions and 4 mM CoCl2. The effects on the film formation and growth, such as tartrate–cobalt ratio, pH, applied potential, etc. were widely evaluated. The electrodeposition process, under anodic conditions and moderately alkaline solutions, most likely involves a redox transition Co(II)→Co(III)/Co(IV) with destruction of the tartrate complex and formation of insoluble oxide/hydroxide cobalt species on the glassy carbon surface. The resulting cobalt oxyhydroxide films were characterised by cyclic voltammetry (CV) in 0.1 M NaOH solutions and by scanning electron microscopy (SEM) analysis after different strategies of preparation and various electrochemical treatments. The electrochemical activity of the deposited films was checked using various organic molecules as model compounds.  相似文献   

7.
Ni(La)-hydroxide films were prepared from aqueous colloidal solutions containing nickel sulfate and lanthanum acetate in the molar ratio 10:1. Two types of film were made by heating for 15 and 60?min at 300?°C. Thermogravimetry (TG) and X-ray diffraction (XRD) reveal that both films consist of NiO (bunsenite 40%) nanoparticles (particle size?~30?Å), the remainder being amorphous. IR spectroscopy showed that the amorphous phase comprised the α(II)-Ni(OH)2 phase incorporating SO4 2?, carboxylate and water species. Cyclic voltammetry (CV) in a 0.1?M LiOH electrolyte combined with in situ UV-VIS spectroscopy revealed that the colouring/bleaching changes, as a function of applied potential, differed considerably for the two types of film. Ex situ IR spectroelectrochemical measurements at near-grazing incidence angle conditions using P-polarised light (NGIA IR) were performed for films heated for 60?min in 0.1?M LiOH and 0.1?M tetramethylammonium hydroxide (TMAH) electrolytes and cycled 1402 and 1802 times. During the oxidation/reduction cycles the α(II)-Ni(OH)2 phase transforms to the γ(III)-NiOOH phase, while the β(II)-Ni(OH)2 did not develop. This explains the high cycling stability of Ni(La)-hydroxide films. The incorporation of TMA+ ions was observed from the ν(CH3) stretching band intensities in the IR spectra of cycled films.  相似文献   

8.
Ferricyanide ions oxidize Fe(III) up to Fe(VI) in 7–11 M KOH solutions and 10–16 M NaOH solutions. The completeness of the oxidation increases with increasing alkali and ferricyanide concentrations. The presence of KNO2, KAc, and K2C2O4 in 7 M KOH solution increases the Fe(VI) yield. Potassium fluoride in the concentration of 0.02 M does not hinder Fe(VI) formation, but in the concentration of 0.1 M completely suppresses Fe(III) oxidation. The attempt to oxidize Fe(VI) up to Fe(VIII) by the disproportionation of Fe(VI) or by the action of Fe(CN)63− and ozone was unsuccessful due to a high oxidation potential of the Fe(VIII)/(VI) couple.  相似文献   

9.

The properties of poly(3,4-ethylenedioxythiophene) (PEDOT) films were studied electrochemically at high positive potentials (from–0.3 to 1.5 V relative to the Ag/AgCl electrode). A cyclic voltammetry (CV) study revealed the range of potentials (up to 1.3–1.5 V) where the cycling leads to significant changes in the electrochemical, structural, and morphological properties of the polymer film due to overoxidation. When the upper cycling potential Eup exceeded 1.4 V, the anodic current significantly increased during the first cycle and then decreased, which suggests a loss of the electroactivity of the polymer and degradation of its properties. In the high-frequency region of the impedance spectra of the PEDOT films, a semicircle appears after overoxidation, which indicates a notable increase of the charge transfer resistance in the system, in contrast to the films subjected to potentiodymanic processing in a limited range of potentials from–0.3 to 1.3 V. The effect of overoxidation on the polymer morphology was studied by scanning electron microscopy. The chemical state of elements in the structure of the polymer film was determined by X-ray photoelectron spectroscopy. The obtained data indicate that–S=O groups formed at the thiophene sulfur in the polymer.

  相似文献   

10.
Potentiometric evidence has been cited for the formation of heteroligand 1:1:1, ternary and 1:1:1:1, quaternary species in the systems M(III)-CDTA-CCA/MIA and M(III)-CDTA-CCA-MIA, respectively (M(III) = La(III), Pr(III), Nd(III), Gd(III) or Dy(III); CDTA = cyclohexanediaminetetra-acetic acid; CCA = citraconic acid and MIA = maleic acid). The protonated mixed ligand complexes, existing in the low pH range, appear to undergo deprotonation resulting in the formation of normal chelates at comparatively higher pH. The formation constants log KMLL′ and log KMLL′L″, respectively, for ternary and quaternary species, formed by simultaneous addition of the ligands to the metal ion and deprotonation constants,-log KAH, for protonated ternary species have been evaluated at 27 ± 1°C and ionic concentration (μ) = 0.1 M KNO3. The order of relative stabilities is La(III) < Pr(III) < Nd(III) < Gd(III) < Dy(III).  相似文献   

11.
The electrochemical synthesis of poly(4-aminomethyl-5-hydroxymethyl-2-methyl pyridine-3-ol) on steel and copper electrodes was achieved in both sulfuric acid and oxalic acid by cyclic voltammetry technique. Characterization of the polymer films were achieved by Fourier transforms infrared spectroscopy technique (FTIR) and scanning electron microscope (SEM). Corrosion performance of coatings was investigated in 0.1 M H2SO4 by potentiodynamic polarization and electrochemical impedance (EIS) spectroscopy techniques.  相似文献   

12.
The interaction of Al(III) with ampicillin, amoxicillin, and cephalexin anions (L) was studied by the pH-metric titration in aqueous solutions at 20°C and ionic strength 0.1 (KNO3). In weakly acidic medium, complexes with the composition Al(OH)L and Al(OH)2L were formed. The diagrams of the distribution of the complex forms of Al(III) depending on the pH were plotted. The constants of formation of the complexes were determined.  相似文献   

13.
The method of cyclic voltammetry (CV) was used to compare electrochemical and electrocatalytic properties of meso-triphenylcorrole [H3(ms-Ph)3Cor] and also its complexes with Mn(III), Co(III), Cu(III), and Zn(II) in 0.1M KOH. Metal-localized redox transitions are detected in the complexes of Mn (III ?? IV) and (III ?? II), Co (III ?? II), Cu (III ?? II). It is shown that the manganese complex features most effective catalytic properties in the reaction of molecular oxygen electroreduction.  相似文献   

14.
《Electroanalysis》2004,16(24):2065-2072
The interaction between Cu(II) and pectin extracted from citrus fruit was studied in KNO3 0.10 mol dm?3 at 25 °C and pH 5.5, using ion selective electrode potentiometry and voltammetry, namely differential pulse polarography and square‐wave voltammetry. Although many independent variables may affect Cu(II)‐polymer interactions such as charge density, polymer concentration and copper to polymer concentration ratio, a good fitting was observed for the model with ML and ML2 complex species, when M:L total concentration (mol dm?3) ratio varies from 0.2 to 2.7 and the ligand concentration is in the range (0.2 to 1) g dm?3, i.e., (0.4 to 2)×10?3 mol COO? dm?3. The complex parameters found in these conditions were log βCuL=3.5±0.1 and log βCuL2= 8.0±0.2. For lower total ligand and total metal ion concentrations, used in voltammetry, the interaction Cu(II)‐pectin is affected by a cooperative mode (increase of metal ion‐ligand affinity) when the total metal ion concentration increases and by an anti‐cooperative mode when the total ligand concentration increases, possibly due to different conformations of the polymer.  相似文献   

15.
The effect of metal ions (Cu(II), Zn(II), Co(II), Ni(II), La(III), Fe(III)) on the critical micelle concentration (CMC) of ionic surfactants (sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB)) were investigated at 25±0.1°C, μ = 0.1 M (KNO3), using conductivity method in this paper. A series of general empirical expressions about the relationship between the CMC values for SDS and CTAB and the concentrations of metal ions have been derived. The results showed that the CMC values for both SDS and CTAB decreased with increasing the concentrations of metal ions. This can be interpreted by the counterion effect and the entropy driving effect.  相似文献   

16.
In this work we report an easy and efficient way to fabricate nanostructured cobalt oxide (Co3O4) thin films as a non-enzymatic sensor for H2O2 detection. Co3O4 thin films were grown on ITO glass substrates via the sol-gel method and characterized with several techniques including X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and optical absorbance. The Co3O4 thin films’ performance regarding hydrogen peroxide detection was studied in a 0.1 M NaOH solution using two techniques, cyclic voltammetry (CV) and amperometry. The films exhibited a high sensitivity of 1450 μA.mM−1.cm−2, a wide linear range from 0.05 μM to 1.1 mM, and a very low detection limit of 18 nM. Likewise, the Co3O4 thin films produced showed an exceptional stability and a high selectivity.  相似文献   

17.
《Electroanalysis》2004,16(10):860-865
The electrocatalytic oxidation of sulfite has been studied on the cobalt pentacyanonitrosylferrate modified glassy carbon electrode (CoPCNF). The CoPCNF films on the glassy carbon electrodes show an excellent electrocatalytic activity toward the oxidation of sulfite in 0.5 M KNO3. The kinetics of the catalytic reaction was investigated by using cyclic voltammetry, rotating disk electrode (RDE) voltammetry and chronoamperometry. The average value of the rate constant, K, for the catalytic reaction and the diffusion coefficient, D, were evaluated by different approaches for sulfite and found to be 2.9×102 M?1s?1 and 4.6×10?6 cm2s?1, respectively. At a fixed potential under hydrodynamic conditions (stirred solutions), the oxidation current is proportional to the sulfite concentration and the calibration plot was linear over the concentration range 5×10?6–1×10?4 M. The detection limit of the method is 3×10?6 M., low enough for the trace sulfite determination.  相似文献   

18.
The preconcentration and voltammetric behavior of BiIII on a sodium humate modified carbon paste electrode was studied by means of cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV). The proposed measurement involves an initial nonelectrolytic preconcentration step in which BiIII is complexed by the surface modifier in a solution of 0.05 M KNO3-0.0106 M HNO3 (pH 2.0) and a subsequent electrochemical scan step in which the preconcentrated BiIII was reduced and then oxidized promptly in supporting electrolyte of 0.5 M HNO3. The resulting DPSV anodic current was proportional to the concentration of BiIII ion over the range of 4.78 × 10−8–1.44 × 10−5 M. The detection limit was 4.78 × 10−8 M. The proposed method was used to determine bismuth in various samples. Various factors affecting the electrode behavior were also investigated at the same time.  相似文献   

19.
Two multidentate ligands: N,N′-di-(propionic acid-2′-yl-)-2,9-di-aminomethylphenanthroline (L1) and N,N′-di-(3′-methylbutyric acid-2′-yl-)-2,9-di-amino-methylphenanthroline (L2) were synthesized and fully characterized by 1H NMR and elemental analysis. The binding ability of L1 and L2 to metal ions such as M(II) (M = Cu, Zn, Co and Ni) and Ln(III) (Ln = La, Nd, Sm, Eu, and Gd) has been investigated by potentiometric titration in aqueous solution and 0.1 mol dm−3KNO3 at 25.0 ± °C. In view of the structure of L1 and L2, mononuclear metal complexes can be formed in solution. The stability constants of binary complexes of ligands L1 and L2 with metal ions M(II) and Ln(III) have been determined respectively and further discussed.  相似文献   

20.
We report the synthesis and the electrochemical properties of hybrid films made of zinc oxide (ZnO) and Meldola's blue dye (MB) using cyclic voltammetry (CV). MB/ZnO hybrid films were electrochemically deposited onto glassy carbon, gold and indium tin oxide-coated glass (ITO) electrodes at room temperature (25 ± 2 °C) from the bath solution containing 0.1 M Zn(NO3)2, 0.1 M KNO3 and 1 × 10−4 M MB. The surface morphology and deposition kinetics of MB/ZnO hybrid films were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical quartz crystal microbalance (EQCM) techniques, respectively. SEM and AFM images of MB/ZnO hybrid films have revealed that the surfaces are well crystallized, porous and micro structured. MB molecules were immobilized and strongly fixed in a transparent inorganic matrix. MB/ZnO hybrid films modified glassy carbon electrode (MB/ZnO/GC) showed one reversible redox couple centered at formal potential (E0′) −0.12 V (pH 6.9). The surface coverage (Γ) of the MB immobilized on ZnO/GC was about 9.86 × 10−12 mol cm−2 and the electron transfer rate constant (ks) was determined to be 38.9 s−1. The MB/ZnO/GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the oxidation of nicotinamide adenine dinucleotide (NADH). The linear response range between 50 and 300 μM NADH concentration at pH 6.9 was observed with a detection limit of 10 μM (S/N = 3). The electrode was stable during the time it was used for the full study (about 1 month) without a notable decrease in current. Indeed, dopamine (DA), ascorbic acid (AA), acetaminophen (AP) and uric acid (UA) did not show any interference during the detection of NADH at this modified electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号