共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct Electrochemistry of Catalase on Single Wall Carbon Nanotubes Modified Glassy Carbon Electrode
QiangZHAO LunHuiGUAN ZhenNanGU QianKunZHUANG 《中国化学快报》2005,16(4):501-504
Direct electrochemistry of catalase (Ct) has been studied on single wall carbon nanotubes (SWNTs) modified glassy carbon (GC) electrode. A pair of well-defined nearly reversible redox peaks is given at -0.48 V (vs. SCE) in 0.1 mol/L phosphate solution (pH 7.0).The peak current in cyclic voltammogram is proportional to the scan rate. The peak potential of catalase is shifted to more negative value when the pH increases. Catalase can adsorb on the SWNTs modified electrode. 相似文献
2.
In this article we report on the fabrication of a carbon ionic liquid electrode (CILE) by using a room temperature ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) as binder. It was further modified by single‐walled carbon nanotubes (SWCNTs) to get a SWCNTs modified CILE denoted as SWCNTs/CILE. The redox protein of hemoglobin (Hb) was further immobilized on the surface of SWCNTs/CILE with the help of Nafion film. UV‐vis and FT‐IR spectra indicated that the immobilized Hb retained its native conformation in the composite film. The direct electrochemistry of Hb on the SWCNTs/CILE was carefully studied in pH 7.0 phosphate buffer solution (PBS). Cyclic voltammetric results indicated that a pair of well‐defined and quasireversible voltammetric peaks of Hb heme Fe(III)/Fe(II) was obtained with the formal potential (E°') at ?0.306 V (vs. SCE). The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n) and the apparent heterogeneous electron transfer rate constant (ks) were calculated as 0.34, 0.989 and 0.538 s?1, respectively. The fabricated Hb modified electrode showed good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) in the concentration range from 20.0 to 150.0 mmol/L with the detection limit of 10.0 mmol/L (3σ). 相似文献
3.
《Electroanalysis》2005,17(1):59-64
Single‐wall carbon nanotubes (SWNTs) sub‐monolayer film has been prepared by simply electrostatically adsorbing nanotubes onto a 2‐aminoethanethiol self‐assembled monolayer (SAM) on a gold bead electrode. Tapping‐mode atomic force microscopy (TM‐AFM) is used to characterize the SWNT film, which exhibits that the orientation of SWNTs on the SAM is horizontal and the surface coverage is quite low. The SWNTs modified electrode shows nearly ideal electrochemical response to Fe(CN) /Fe(CN) redox probe. The electrode with such a low SWNTs coverage, however, shows good electrocatalytic behavior to cytochrome c. 相似文献
4.
LIU Xing-mei ZHANG Xue-yu ZHAO Yi-li LIU Wei-lu WANG Bao-jun ZHANG Yi-hua ZHANG Zhi-quan 《高等学校化学研究》2010,26(5):723-728
The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E 0' ) of Hb was –0.105 V versus SCE, the electron transfer rate constant was 4.66 s –1 . E 0′ of Hb at the modified electrode was linearly varied in a pH range of 5.0—8.0 with a slope of –49.2 mV/pH. The Hb/PAMAM-MWNTs-AuNPs/GCE gave an ex-cellent electrocatalytic response to the reduction of hydrogen peroxide. The catalytic current increased linearly with H 2 O 2 concentration in a range of 1.0×10 ?6 to 2.2×10 ?3 mol/L. The detection limit was 2.0×10 ?7 mol/L at a signal to noise ratio of 3. The Michaelis-Menten constant(K ma pp ) was 2.95 mmol/L. 相似文献
5.
A novel nanohybrid material, constructed by gold nanoparticles (GNPs) and multiwalled carbon nanotubes (MWNTs), was designed for immobilization and biosensing of myoglobin (Mb). Morphology of the nanohybrid film was characterized by SEM. UV‐vis spectroscopy demonstrated that Mb on the composite film could retain its native structure. Direct electrochemistry of Mb immobilized on the GNPs/MWNTs film was investigated. The immobilized Mb showed a couple of quasireversible and well‐defined cyclic voltammetry peaks with a formal potential of about ?0.35 V (vs. Ag/AgCl) in pH 6.0 phosphate buffer solution (PBS) solution. Furthermore, the modified electrode also displayed good sensitivity, wide linear range and long‐term stability to the detection of hydrogen peroxide. The experiment results demonstrated that the hybrid matrix provided a biocompatible microenvironment for protein and supplied a necessary pathway for its direct electron transfer. 相似文献
6.
A new hemoglobin (Hb) and carbon nanotube (CNT) modified carbon paste electrode was fabricated by simply mixing the Hb, CNT with carbon powder and liquid paraffin homogeneously. To prevent the leakage of Hb from the electrode surface, a Nafion film was further applied on the surface of the Hb‐CNT composite paste electrode. The modified electrode was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Direct electrochemistry of hemoglobin in this paste electrode was easily achieved and a pair of well‐defined quasi‐reversible redox peaks of a heme Fe(III)/Fe(II) couple appeared with a formal potential (E0′) of ?0.441 V (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical behaviors of Hb in the composite electrode were carefully studied. The fabricated modified bioelectrode showed good electrocatalytic ability for reduction of H2O2 and trichloroacetic acid (TCA), which shows potential applications in third generation biosensors. 相似文献
7.
碳纳米管电极上辣根过氧化物酶的直接电化学 总被引:21,自引:3,他引:21
制备了碳纳米管修饰玻碳电极(CNT/GC).将辣根过氧化物酶(HRP)固定在CNT/GC电极表面,形成HRP-CNT/GC电极.研究了HRP的直接电子转移.实验结果表明,HRP在CNT/GC电极表面能进行有效和稳定的直接电子转移反应,其循环伏安曲线上表现出一对良好的、几乎对称的氧化还原峰;式量电位E0'几乎不随扫速(至少在20~100 mV/s的扫速范围内)而变化,其平均值为(-0.319±0.002) V (vs. SCE, pH 6.9); HRP在CNT/GC电极表面直接电子转移的速率常数为(2.07±0.56) s-1;式量电位E0'与溶液pH 的关系表明HRP的直接电化学是(1e+1H+)的电极过程.进一步的实验结果显示,固定在CNT/GC电极表面的HRP能保持其对H2O2还原的生物电催化活性,而且能快速地响应H2O2浓度的变化.本文制备碳纳米管修饰电极和固定酶的方法具有简单和易于操作等优点,可用于获得其它生物氧化还原蛋白质和酶的直接电子转移. 相似文献
8.
血红蛋白在碳纳米管修饰碳糊电极上的直接电化学行为 总被引:6,自引:0,他引:6
利用吸附法将血红蛋白(Hb)固定在碳纳米管修饰碳糊电极表面,制成稳定的固载Hb碳纳米管修饰电极,研究了Hb在碳纳米管修饰电极上的直接电化学行为.固载Hb的碳纳米管修饰电极在pH=7.0的PBS(磷酸盐缓冲溶液)中有一对相当可逆的循环伏安氧化还原峰,为Hb血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰.式电位为-0.160 V(vs SCE),随扫描速度变化很小.电子转移数为1.021,近似为一个辅基发生电子转移.Hb在碳纳米管修饰电极表面的电子转移常数为0.0816 s-1,远大于亚甲蓝作媒介体时Hb的电子转移反应速率常数.应用于过氧化氢、三氯乙酸和硝基苯等的电催化还原,固定在碳纳米管修饰碳糊电极的血红蛋白表现出稳定且较高的催化活性. 相似文献
9.
氧化还原蛋白质在模拟生物膜修饰电极上的直接电化学 总被引:8,自引:0,他引:8
评述了氧化还原蛋白在模拟生物膜这种新型的化学修饰电极上的直接电化学研究的进展。对蛋白质在表面活性剂薄膜电极和多层复合薄膜电极上的电化学行为、模拟生物膜的超分子结构以及蛋白质在该类薄膜修饰电极上对不同底物的电催化性质进行了较详细的介绍。 相似文献
10.
Xiuli Wang Haiyan Zhao Hongyan Lin Guocheng Liu Jiani Fang Baokuan Chen 《Electroanalysis》2008,20(10):1055-1060
A conductive carbon paste electrode (CPE) comprised of a new copper‐complex of [Cu2(Dpq)2(Ac)2(H2O)2](ClO4)2?H2O (Dpq=dipyrido[3,2‐d : 2′,3′‐f]quinoxaline, Ac=acetate) and carbon powder, was fabricated by the direct mixing method. The electrochemical behavior and electrocatalysis of the new copper‐complex modified CPE (Cu‐CPE) have been studied in detail. Cyclic voltammograms showed that the Cu‐CPE had a favorable electrochemical response of a reversible redox couple of Cu(II)/Cu(I). The Cu‐CPE showed good electrocatalytic activity toward the reduction of the bromate, nitrite and hydrogen peroxide. The electrocatalytic reduction peak current of KBrO3, KNO2 and H2O2 showed a linear dependent on their concentrations. All of the results revealed that the Cu‐CPE had a good reproducibility, remarkable long term stability and especially good surface renewability by simple mechanical polishing in the event of surface fouling, which is important for practical application. 相似文献
11.
12.
过氧化氢酶在琼脂糖膜中的电化学研究 总被引:2,自引:0,他引:2
用琼脂糖(Agarose)将过氧化氢酶(Cat)固定在热裂解石墨电极表面,制备了Cat-agarose膜修饰电极。包埋在琼脂糖中的过氧化氢酶可以与电极直接传递电子,在pH6.0的磷酸缓冲溶液中可得一对可逆的过氧化氢酶辅基血红素Fe(Ⅲ)/Fe(Ⅱ)氧化还原峰,式电势为-0.343V(vs.SCE)。其式电势随溶液的pH值增加而负移且呈线性关系,直线斜率为-36.8mV/pH,说明过氧化氢酶的电子传递过程伴随有质子的转移。紫外可见光谱、红外光谱表明,在琼脂糖膜中过氧化氢酶的构象保持不变。并研究了过氧化氢酶修饰电极对氧气、过氧化氢、一氧化氮的电催化性质。在16.5~278/μmol/L的范围内,催化电流与过氧化氢浓度呈线性关系;在2.75~20.76mmol/L的范围内,催化电流与亚硝酸根浓度呈线性关系。 相似文献
13.
Single-wall carbon nanotubes(SWNTs) modified gold electrodes were prepared by using two different methods.The electrochemical behavior of cytochrome c on the modified gold electrodes was investigated.The first kind of SWNT-modified electrode (noted as SWNT/Au electrode)was prepared by the adsorption of carboxylterminated SWNTs from DMF dispersion on the gold electrode.The oxidatively processed SWNT tips were covalently modified by coupling with amines (AET) to form amide linkage.Via Au-S chemical bonding,the self-assembled monolayer of thiol-unctionalized nanotubes on gold surface was fabricated so as to prepare the others SWNT-modified electrode (noted as SWNT/AET/Au electrode).It was shown from cyclic voltammetry cxperiments that cytochrome c exhibited direct electrochemical responses on the both electrodes, but only the current of controlled diffusion existed on the SWNT/Au electrode while both the currents of controlled diffusion and adsorption of cytochrome c occurred on the SWNT/AET/Au electrode.Photoelastic Modulation Infared Reflection Absorpthion Spectroscopy (PEM-IRRAS) and Quartz Crystal Microbalance (QCM) were employed to verify the adsorption of SWNTs on the gold electrodes.The results proved that SWNTs could enhance the direct electron transfer proecss between the electrodes and redox proteins. 相似文献
14.
Hemoglobin was entrapped in composite electrodeposited chitosan‐multiwall carbon nanotubes (MCNTs) film by assembling gold nanoparticles and hemoglobin step by step. In phosphate buffer solution (pH 7), a pair of well‐defined and quasireversible redox peaks appeared with formal potential at ?0.289 V and peak separation of 100 mV. The redox peaks respected for the direct electrochemistry of hemoglobin at the surface of chitosan‐MCNTs‐gold nanoparticles modified electrode. The parameters of experiments have also been optimized. The composite electrode showed excellent electrocatalysis to peroxide hydrogen and oxygen, the peak current was linearly proportional to H2O2 concentration in the range from 1×10?6 mol/L to 4.7×10?4 mol/L with a detection limit of 5.0×10?7 mol/L, and this biosensor exhibited high stability, good reproducibility and better selectivity. The biosensor showed a Michaelis–Menten kinetic response as H2O2 concentration is larger than 5.0×10?4 mol/L, the apparent Michaelis–Menten constant for hydrogen peroxide was calculated to be 1.61 μmol/L. 相似文献
15.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed. 相似文献
16.
铁氰化钆修饰电极的固态电化学及电催化性能 总被引:2,自引:0,他引:2
制备了一种新的稀土铁氰化物——铁氰化钆(GdHCF), 并对其进行了表征. 元素分析、EDX和TGA结果表明, GdHCF的计量式为NaGdFe(CN)6•12H2O(在NaCl溶液中制备), 红外光谱结果显示GdHCF晶体中有两种形式的水分子存在, 一种是靠氢键结合的填隙水分子(5个), 一种是与Gd配位的配位水分子(7个);XPS结果表明GdHCF中铁为+2价, 钆为+3价. 将GdHCF固定到石墨(SG)电极上(GdHCF/SG), 研究了它的固态电化学性能, 其循环伏安曲线上表现出一对良好且稳定的氧化还原峰, 式量电位E0′几乎不随扫速而变化(在10~300 mV•s−1范围内, E0′平均值为(197±3) mV);并且E0′与支持电解质中阳离子(Na+)活度的对数(lgaNa+)之间呈线性关系, 斜率为54.1 mV, 这一特性关系可用于测定NaCl溶液中Na+的活度. 进一步研究的结果表明, GdHCF对神经递质多巴胺(DA)和抗坏血酸(AA)的电化学氧化均具有催化作用, 催化电流随DA(或AA)浓度的增加而增加. 相似文献
17.
Single‐wall carbon nanotubes (SWCNTs) were used as an immobilization matrix to incorporate [Ir(ppy)2(phen‐dione)](PF6) complex onto a glassy carbon electrode for the study of electrocatalytic reduction of periodate ion. Detailed preliminary electrochemical data for the Ir(III)‐complex in acetonitrile solution and for the modified GCE/SWCNTs/[Ir(ppy)2(phen‐dione)](PF6)/CGE are presented. The modified electrode was applied to selective amperometric detection of periodate through its electrocatalytic reduction to iodide at 0.200 V and pH 2.0. The use of amperometry resulted in two calibration plots over the concentration ranges of 1‐20 μM and 20‐450 μM, with a detection limit of 0.6 μM and sensitivity of 198 nA μM?1. 相似文献
18.
In this paper two kinds of ionic liquids (ILs) were used for the construction of a myoglobin (Mb) electrochemical biosensor. Firstly a hydrophilic ionic liquid of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) was used as binder to prepare a carbon ionic liquid electrode (CILE), then a Nafion and hydrophobic ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) composite film was applied on the surface of the CILE. The direct electrochemistry of Mb in the Nafion‐BMIMPF6/CILE was achieved with the cathodic and anodic peak potentials located at ?0.345 V and ?0.213 V (vs. SCE). The formal potential (E°′) was located at ?0.279 V, which was the characteristic of Mb FeIII/FeII redox couples. The electrochemical behaviors of Mb in the Nafion‐ionic liquid composite film modified CILE were carefully investigated. The Mb modified electrode showed good electrocatalytic behaviors to the reduction of trichloroacetic acid (TCA) and NaNO2. Based on the Nafion‐BMIMPF6/Mb/CILE, a new third generation reagentless biosensor was constructed. 相似文献
19.
Dilute silica sol‐gel was simply dropped on the surface of a basal plane graphite electrode (BPGE) to form a silica sol‐gel film modified electrode. Direct electrochemical response of cytochrome c (Cyt c) on the modified electrode was observed by cyclic voltammetry (CV). The results suggested that Cyt c could be tightly adsorbed on the surface of the silica sol‐gel film modified electrode. A couple of well‐defined and nearly reversible redox peaks can be observed in a phosphate buffer solution (pH 7.0), which anodic and cathodic peak potentials were at ?0.243 and ?0.306 V (vs. Ag/AgCl), respectively. Cyt c adsorbed on the surface of silica sol‐gel film shows a remarkable electrocatalytic activity for the reduction of oxygen. Based on these, a third‐generation biosensor could be constructed to detect the concentration of oxygen in aqueous solution. 相似文献
20.
In this paper a room temperature ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) was used as binder for the construction of carbon ionic liquid electrode (CILE) and a new electrochemical biosensor was developed for determination of H2O2 by immobilization of hemoglobin (Hb) in the composite film of Nafion/nano‐CaCO3 on the surface of CILE. The Hb modified electrode showed a pair of well‐defined, quasi‐reversible redox peaks with Epa and Epc as ?0.265 V and ?0.470 V (vs. SCE). The formal potential (E°′) was got by the midpoint of Epa and Epc as ?0.368 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The peak to peak separation was 205 mV in pH 7.0 Britton–Robinson (B–R) buffer solution at the scan rate of 100 mV/s. The direct electrochemistry of Hb in the film was carefully investigated and the electrochemical parameters of Hb on the modified electrode were calculated as α=0.487 and ks=0.128 s?1. The Nafion/nano‐CaCO3/Hb film electrode showed good electrocatalysis to the reduction of H2O2 in the linear range from 8.0 to 240.0 μmol/L and the detection limit as 5.0 μmol/L (3σ). The apparent Michaelis–Menten constant (KMapp) was estimated to be 65.7 μmol/L. UV‐vis absorption spectroscopy and FT‐IR spectroscopy showed that Hb in the Nafion/nano‐CaCO3 composite film could retain its native structure. 相似文献