共查询到20条相似文献,搜索用时 15 毫秒
1.
Agata Michalska 《Electroanalysis》2012,24(6):1253-1265
This paper is aiming to give a brief overview of recent research in the field of all‐solid‐state, internal solution free, ion‐selective electrodes and reference electrodes, employing conducting polymers or nano‐/microstructures as solid contacts beneath the polymeric, ion‐selective or reference membranes. The emphasis is on papers published in the last five years (after 2006). According to the papers published, poly(3‐octylthiophene) conducting polymer transducers offer highly reliable sensors for various applications, involving demanding analytical approaches and miniature sensors. On the other hand, the search for alternative materials continues: the sensors obtained by placing nano‐/microstructures (conducting polymers but also other materials, like, e.g., carbon nanotubes) underneath the receptor membrane are intensively tested. The recent years have also shown how useful the application of advanced instrumental methods is for the investigation of processes occurring within all‐solid‐state ion‐selective electrodes. 相似文献
2.
Zekra Mousavi Agnieszka Teter Andrzej Lewenstam Magdalena Maj‐Zurawska Ari Ivaska Johan Bobacka 《Electroanalysis》2011,23(6):1352-1358
Multi‐walled carbon nanotubes (MWCNTs) were compared with poly(3‐octylthiophene) (POT) as ion‐to‐electron transducer in all‐solid‐state potassium ion‐selective electrodes with valinomycin‐based ion‐selective membranes. MWCNTs and POT were mixed with the other components of the potassium ion‐selective membrane cocktail (valinomycin, KTpClPB, o‐NPOE, PVC, THF) which was then applied on a glassy carbon (GC) substrate to prepare single‐piece ion‐selective electrodes (SPISEs). Results from potentiometric and impedance measurements showed that the MWCNT‐based electrodes have a more reproducuible standard potential and a lower overall impedance than the electrodes based on POT. Both types of electrodes showed similar sensitivity to potassium ions and no redox sensitivity. 相似文献
3.
《Electroanalysis》2006,18(8):763-771
A novel concept of tailoring potentiometric responses of all‐solid‐state ion‐selective electrodes was introduced. The effect of composition and resulting properties of the conjugated polymer transducer, placed between the electrode support and ion‐selective membrane, on analytical characteristic of obtained sensors was studied. 相似文献
4.
《Electroanalysis》2006,18(1):7-18
Conducting polymers, i.e., electroactive conjugated polymers, are useful both as ion‐to‐electron transducers and as sensing membranes in solid‐state ion‐selective electrodes. Recent achievements over the last few years have resulted in significant improvements of the analytical performance of solid‐contact ion‐selective electrodes (solid‐contact ISEs) based on conducting polymers as ion‐to‐electron transducer combined with polymeric ion‐selective membranes. A significant amount of research has also been devoted to solid‐state ISEs based on conducting polymers as the sensing membrane. This review gives a brief summary of the progress in the area in recent years. 相似文献
5.
《Electroanalysis》2005,17(8):641-647
An all‐solid‐state hydrogen‐ion‐selective electrode (ASHISE) was fabricated using the polymer hybrid membrane. Polymer membranes composed of Tecoflex polyurethane (TPU), polyvinyl chloride (PVC), silicon rubber (SR), and additives (KTpClPB, DOA, and TDDA) were cast on a carbon rod. The TPU/SR hybrid membrane exhibited a longer lifetime and a higher sensitivity in the sensing of the H+ ion compared to conventional TPU/PVC and PVC/SR hybrid membranes. Moreover, the addition of SiCl4 to TPU‐based matrices enhanced the potentiometric response and ISE stability, due to the chemical bonding between Si and C?O in urethane, in which the cross‐linking configuration was confirmed by DSC, FT‐IR, and XPS experiments. TPU/SR membranes containing SiCl4 were rendered more stable and showed a pH response over a wide range (i.e., pH 2–11.5) with the slope of 60±2 mV/pH for more than four months. The ASHISE exhibited a small interfering potential variation in the wide range of the salt concentration (from 1.0×10?6 M up to 0.1 M). The ASHISE showed a result comparable to a commercial clinical blood analyzer. 相似文献
6.
《Electroanalysis》2005,17(4):327-333
Conducting polymers (CP) remain a promising material to construct stable potential all‐solid‐state ion‐selective potentiometric electrodes. The unique properties of poly(3,4‐ethylenedioxythiophene) doped with poly(4‐styrenesulfonate) ions, PEDOT‐PSS: high CP stability and affinity of doping anions towards Cu2+ ions, make it highly attractive for construction of all‐solid‐state copper(II)‐selective electrodes with outstanding selectivity. The additional benefits can arise from solution processability of commercially available PEDOT‐PSS system. This material was highly promising for a new sensor arrangement, i.e. to obtain disposable, planar and flexible all‐plastic Cu2+‐selective electrodes. These sensors can be obtained by casting a commercially available dispersion of PEDOT‐PSS (Baytron P) on a plastic, non‐conducting support material. The CP being both electrical lead and ion‐to‐electron transducer, was covered with plastic, solvent polymeric Cu2+ selective membrane. This extremely simple arrangement, after conditioning in dilute Cu2+ solution, was characterized with linear Nernstian responses within the activities range from: 0.1 to 10?4 M, followed by super‐Nernstian responses for lower activities. The latter result points to effective elimination of primary ions leakage from the plastic membrane / transducer phase and has resulted in significantly improved selectivities. Obtained log K values were equal to ?7.6 for Co2+, ?7.4 for Zn2+, ?7.2 for Ca2+ and ?6.8 for Na+, respectively. 相似文献
7.
Ultrahigh Energy Density Realized by a Single‐Layer β‐Co(OH)2 All‐Solid‐State Asymmetric Supercapacitor 下载免费PDF全文
Shan Gao Dr. Yongfu Sun Fengcai Lei Liang Liang Jiawei Liu Wentuan Bi Prof. Bicai Pan Prof. Yi Xie 《Angewandte Chemie (International ed. in English)》2014,53(47):12789-12793
A conceptually new all‐solid‐state asymmetric supercapacitor based on atomically thin sheets is presented which offers the opportunity to optimize supercapacitor properties on an atomic level. As a prototype, β‐Co(OH)2 single layers with five‐atoms layer thickness were synthesized through an oriented‐attachment strategy. The increased density‐of‐states and 100 % exposed hydrogen atoms endow the β‐Co(OH)2 single‐layers‐based electrode with a large capacitance of 2028 F g?1. The corresponding all‐solid‐state asymmetric supercapacitor achieves a high cell voltage of 1.8 V and an exceptional energy density of 98.9 Wh kg?1 at an ultrahigh power density of 17 981 W kg?1. Also, this integrated nanodevice exhibits excellent cyclability with 93.2 % capacitance retention after 10 000 cycles, holding great promise for constructing high‐energy storage nanodevices. 相似文献
8.
《Electroanalysis》2006,18(1):19-25
The potentiometric response behavior of Ca2+‐selective poly(vinyl chloride) (PVC) and polyurethane (PU) membranes with different inner contacts has been compared. Evidence for the formation of a water film between membrane and internal contact and, hence, a less than optimal lower detection limit have been found for membranes directly in contact with bare Au or with polypyrrole generated by electropolymerization in the presence of KCl. A significantly better behavior is shown by membranes with polypyrrole prepared in the presence of potassium hexacyanoferrate. Best performances have been obtained with solvent‐cast poly(3‐octylthiophene) as the internal contacting layer. As compared with the PVC membranes, those with PU had a significantly worse performance throughout. 相似文献
9.
Kay Saalwchter 《Macromolecular rapid communications》2002,23(4):286-291
The dynamics of poly(dimethylsiloxane) in its inclusion compound with γ‐cyclodextrin are elucidated using modern fast‐MAS solid‐state NMR techniques. Measurements of methyl 1H–1H and 1H–13C dipolar coupling constants indicate that the polymer undergoes a uniform motion, rendering all methyl groups equivalent. The dynamics of the Si—C bond is characterized by either a dynamic order parameter of S = 0.72, or, assuming a stably rotating helical structure, an inclination angle of 73° relative to the rotation axis. 相似文献
10.
11.
Savarimuthu Philip Anthony 《化学:亚洲杂志》2012,7(2):374-379
2‐(2‐Hydroxy‐phenyl)‐4(3H)‐quinazolinone (HPQ), an organic fluorescent material that exhibits fluorescence by the excited‐state intramolecular proton‐transfer (ESIPT) mechanism, forms two different polymorphs in tetrahydrofuran. The conformational twist between the phenyl and quinazolinone rings of HPQ leads to different molecular packing in the solid state, giving structures that show solid‐state fluorescence at 497 and 511 nm. HPQ also shows intense fluorescence in dimethyl formamide (DMF) solution and selectively detects Zn2+ and Cd2+ ions at micromolar concentrations in DMF. Importantly, HPQ not only detects Zn2+ and Cd2+ ions selectively, but it also distinguishes between the metal ions with a fluorescence λmax that is blue‐shifted from 497 to 420 and 426 nm for Zn2+ and Cd2+ ions, respectively. Hence, tunable solid‐state fluorescence and selective metal‐ion‐sensor properties were demonstrated in a single organic material. 相似文献
12.
Pankaj Kumar 《Electroanalysis》2012,24(10):2005-2012
A new ionophore, i.e. p‐(2‐thiazolazo)calix[4]arene ( I ) has been explored for its selective behavior towards Ni(II) ions. A poly(vinyl chloride) based membrane containing ( I ) as an electroactive material along with sodiumtetraphenylborate (NaTPB), and nitrophenyloctyl ether in the ratio 10 : 100 : 3 : 150 (I:PVC:NaTPB:NPOE) (w/w) was used to fabricate an all solid state nickel(II)‐selective sensor. The developed sensor exhibited a working concentration range of 1.0×10?6–1.0×10?1 M, with a Nernstian slope of 28.9±1.0 mV/decade of activity and a response time of 10–15 s. This sensor shows a detection limit of 9.0×10?7 M. Its potential response remains unaffected of pH in the range 3.0–7.6, and the cell assembly could be used successfully in partially nonaqueous medium (up to 10 % v/v) without any significant change in the slope value or the working concentration range. The sensor worked satisfactorily for about ten weeks and exhibited excellent selectivity over a number of mono‐, bi‐, and tri‐valent cations including alkali, alkaline earth metal, and transition metal ions. It could be used as an indicator electrode for the end point determination in the potentiometric titration of nickel ions against ethylenediaminetetraacetic acid (EDTA) as well as for the determination of nickel ion concentration in real samples. 相似文献
13.
14.
《Electroanalysis》2005,17(11):1015-1018
A new pendant‐arm derivative of diaza‐18‐crown‐6, containing two oxime donor groups, has been synthesized and incorporated into a polyvinyl chloride (PVC) membrane ion‐selective electrode. The electrode shows selectivity for Ag+ ion, with a near Nernstian response. Pb2+, Cu2+, Hg2+, and Tl+ are major interfering ions, with Cd2+ having minor interference. The electrode shows no potentiometric response for the ions Mg2+, Al3+, K+, Ca2+, Ni2+, Fe3+, and La3+, and is responsive to H+ at pH<6. 相似文献
15.
Facile Fabrication of Solid‐state Electrochemiluminescence Sensor via Non‐covalent π‐π Stacking and Covalent Bonding on Graphite Electrode 下载免费PDF全文
Herein, a facile and efficient method was developed for fabrication of solid‐state electrochemiluminescence (ECL) sensor via non‐covalent π‐π stacking and covalent bonding on the graphite electrode (GE) surface. The electrode was firstly modified with 1‐aminopyrene via π‐π stacking between GE surface and the pyrene moiety. Thereafter a stable and efficient solid‐state ECL sensor was fabricated by covalent immobilization of ruthenium(II) onto the GE surface via amidation reaction between the 1‐aminopyrene and bis(2,2′‐bipyridyl)(4‐methyl‐4′‐carboxypropyl‐2,2′‐bipyridyl) ruthenium(II) bishexafluorophosphate. The sensor has been investigated using tripropylamine and tetracycline as representative analytes, and low detection limits of 0.7 nM and 3.5 nM (S/N=3) were reached, respectively. 相似文献
16.
Prof. Dr. Suning Wang Deng‐Tao Yang Jiasheng Lu Hiroyuki Shimogawa Prof. Dr. Shaolong Gong Xiang Wang Soren K. Mellerup Prof. Dr. Atsushi Wakamiya Dr. Yi‐Lu Chang Prof. Dr. Chuluo Yang Prof. Dr. Zheng‐Hong Lu 《Angewandte Chemie (International ed. in English)》2015,54(50):15074-15078
New BN‐heterocyclic compounds have been found to undergo double arene photoelimination, forming rare yellow fluorescent BN‐pyrenes that contain two B? N units. Most significant is the discovery that the double arene elimination can also be driven by excitons generated electrically within electroluminescent (EL) devices, enabling the in situ solid‐state conversion of BN‐heterocycles to BN‐pyrenes and the use of BN‐pyrenes as emitters for EL devices. The in situ exciton‐driven elimination (EDE) phenomenon has also been observed for other BN‐heterocycles. 相似文献
17.
Fredrik Sundfors Lajos Höfler Róbert E. Gyurcsányi Tom Lindfors 《Electroanalysis》2011,23(8):1769-1772
Accumulation of water in ion‐selective membranes, can lead to inconsistent potentiometric responses with solid‐contact ion‐selective electrode (SC‐ISE) formats, and hence it is essential to restrain their water uptake. We have used FTIR‐ATR spectroscopy to study how the water uptake is influenced by the intermixing of a poly(3‐octylthiophene) (POT) SC and a poly(methyl methacrylate):poly(n‐decyl methacrylate) (PMMA:PDMA) based polymeric membrane matrix, the only SC‐ISE system for which direct evidence was provided on the aqueous layer elimination. Numerical simulations of the FTIR‐ATR spectra of 1 or 5 wt% POT containing PMMA:PDMA membranes showed that the addition of 5 wt% POT to the membrane lowered the equilibrium water uptake, whereas the diffusion coefficients of water in the membrane were found to be less affected. Consequently, POT is beneficial for preventing the formation of detrimental water layers in the SC‐ISE structure. 相似文献
18.
Kevin M. N. Burgess Dr. Ilia Korobkov Prof. David L. Bryce 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(18):5748-5758
Multinuclear (31P and 79/81Br), multifield (9.4, 11.75, and 21.1 T) solid‐state nuclear magnetic resonance experiments are performed for seven phosphonium bromides bearing the triphenylphosphonium cation, a molecular scaffold found in many applications in chemistry. This is undertaken to fully characterise their bromine electric field gradient (EFG) tensors, as well as the chemical shift (CS) tensors of both the halogen and the phosphorus nuclei, providing a rare and novel insight into the local electronic environments surrounding them. New crystal structures, obtained from single‐crystal X‐ray diffraction, are reported for six compounds to aid in the interpretation of the NMR data. Among them is a new structure of BrPPh4, because the previously reported one was inconsistent with our magnetic resonance data, thereby demonstrating how NMR data of non‐standard nuclei can correct or improve X‐ray diffraction data. Our results indicate that, despite sizable quadrupolar interactions, 79/81Br magnetic resonance spectroscopy is a powerful characterisation tool that allows for the differentiation between chemically similar bromine sites, as shown through the range in the characteristic NMR parameters. 35/37Cl solid‐state NMR data, obtained for an analogous phosphonium chloride sample, provide insight into the relationship between unit cell volume, nuclear quadrupolar coupling constants, and Sternheimer antishielding factors. The experimental findings are complemented by gauge‐including projector‐augmented wave (GIPAW) DFT calculations, which substantiate our experimentally determined strong dependence of the largest component of the bromine CS tensor, δ11, on the shortest Br? P distance in the crystal structure, a finding that has possible application in the field of NMR crystallography. This trend is explained in terms of Ramsey’s theory on paramagnetic shielding. Overall, this work demonstrates how careful NMR studies of underexploited exotic nuclides, such as 79/81Br, can afford insights into structure and bonding environments in the solid state. 相似文献
19.
20.
A stable film of poly(3‐octylthiophene)–dihydroxyanthraquinone sulfonate has been synthesized electrochemically in non‐aqueous solution. The incorporation of dihydroxyanthraquinone sulfonate as an anionic complexing ligand into poly(3‐octylthiophene) film during electropolymerization was achieved and copper ions were accumulated by reduction on the electrode surface. The presence of dihydroxyanthraquinone sulfonate during the electrochemical polymerization of 3‐octylthiophene is shown to impact the sensitivity and the stability of the organic conducting film electrode response. The electroanalysis of copper(II) ions using conducting polymer electrode was achieved by differential pulse anodic stripping voltammetry with remarkable selectivity. The analytical performance was evaluated and linear calibration graphs were obtained in the concentration range of 50–400 ng mL?1 copper(II) ion for 240 seconds accumulation time and the limit of detection was found to be 7.8 ng mL?1. To check the selectivity of the proposed stripping voltammetric method for copper(II) ion, various metal ions as potential interferents were tested. The developed method was applied to copper(II) determination in certified reference material, NWRI‐TMDA‐61, trace elements in fortified water. 相似文献