首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 907 毫秒
1.
Determination of copper (Cu), zinc (Zn) and manganese (Mn) micronutrients in soil samples have been studied for an efficient fertiliser application. Plant-available micronutrients of soils were extracted with DTPA extraction procedure, then differential pulse stripping voltammetry (DPSV) and square wave stripping voltammetry (SWSV) methods were performed with inexpensive and disposable pencil graphite electrode for determination of Cu(II), Zn(II) and Mn(II). Parameters such as deposition potential, deposition time, pH and concentration of the supporting electrolyte were optimised for these ions. Under optimised conditions, the limits of detection were found as 0.01 mg L?1 for Cu(II) and 0.02 mg L?1 for Zn(II) and 0.25 mg L?1 for Mn(II). Relative standard deviation (%RSD) was 6.80, 8.86 and 3.29 for Cu(II), Zn(II) and Mn(II), respectively. The experimental study was conducted using a flame atomic absorption spectroscopy. The described stripping voltammetry methods were successfully applied for the determination of Mn(II), Cu(II) and Zn(II) in soil samples.  相似文献   

2.
The article reports on utilization of double deposition and stripping steps for increasing sensitivity of Cu(II) determination by anodic stripping voltammetry (ASV) at two lead film working electrodes. A significant preconcentration of copper was achieved thanks to utilization of a simple design of four electrodes system that gives possibility to perform one measurement cycle consisting of two deposition and two stripping steps. Due to the fact that deposition step is doubled, the concentration of Pb(II) needed to lead film electrodes formation was significantly reduced as compared to traditional procedures using three electrodes system. The analytical procedure of Cu(II) determination was optimized. The experimental factors: supporting electrolyte's pH and its concentration, lead ions concentration, potential and time of deposition at both working electrodes were studied. The Cu(II) peak current was linearly dependent on its concentration from 5×10?10 to 2×10?8 mol L?1 (deposition time of 270 and 160 s at the first and the second working electrode, respectively). The obtained detection limit for copper ions determination was 2.1×10?10 mol L?1. The described procedure was validated by analysis of two water certified reference materials. The described procedure was also utilized for real water sample analysis.  相似文献   

3.
Pt‐nanoparticles were synthesized and introduced into a carbon paste electrode (CPE), and the resulting modified electrode was applied to the anodic stripping voltammetry of copper(II) ions. The synthesized Pt‐nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy and X‐ray photoelectron spectroscopy techniques to confirm the purity and the size of the prepared Pt‐nanoparticles (ca. 20 nm). This incorporated material seems to act as catalysts with preconcentration sites for copper(II) species that enhances the sensitivity of Cu(II) ions to Cu(I) species at a deposition potential of ?0.6 V in an aqueous solution. The experimental conditions, such as, the electrode composition, pH of the solution, pre‐concentration time, were optimized for the determination of Cu(II) ion using as‐prepared electrode. The sensitivity changes on the different binder materials and the presence of surfactants in the test solution. The interference effect of the coexisted metals were also investigated. In the presence of surfactants, especially TritonX‐100, the Cu(II) detection limit was lowered to 3.9×10?9 M. However, the Pt‐nanoparticle modified CPE begins to degrade when the period of deposition exceeds to 10 min. Linear response for copper(II) was found in the concentration range between 3.9×10?8 M and 1.6×10?6 M, with an estimated detection limit of 1.6×10?8 M (1.0 ppb) and relative standard deviation was 4.2% (n=5).  相似文献   

4.
We describe a new and promising type of selenium film electrode for anodic stripping voltammetry. This method is based on formation of copper selenide onto an in-situ formed selenium-film carbon electrode, this followed by Osteryoung square-wave anodic stripping voltammetry. Copper(II) is also in-situ electroplated in a test solution containing 0.01 mol L-1 hydrochloric acid, 0.05 mol L?1 potassium chloride and 500 µg L?1 Se(IV) at a deposition potential of ?300 mV. The well-defined anodic peak current observed at about 200 mV is directly proportional to the Cu(II) concentration over the range from 1.0 to 100 µg L?1 under the optimized conditions. The detection limit (three sigma level) is 0.2 µg L?1 Cu(II) at 180 s deposition time. Relatively less interferences are shown from most of metal ions except for antimony(III). The method can be applied to analyses of river water and oyster tissue with good accuracy.  相似文献   

5.
A stable film of poly(3‐octylthiophene)–dihydroxyanthraquinone sulfonate has been synthesized electrochemically in non‐aqueous solution. The incorporation of dihydroxyanthraquinone sulfonate as an anionic complexing ligand into poly(3‐octylthiophene) film during electropolymerization was achieved and copper ions were accumulated by reduction on the electrode surface. The presence of dihydroxyanthraquinone sulfonate during the electrochemical polymerization of 3‐octylthiophene is shown to impact the sensitivity and the stability of the organic conducting film electrode response. The electroanalysis of copper(II) ions using conducting polymer electrode was achieved by differential pulse anodic stripping voltammetry with remarkable selectivity. The analytical performance was evaluated and linear calibration graphs were obtained in the concentration range of 50–400 ng mL?1 copper(II) ion for 240 seconds accumulation time and the limit of detection was found to be 7.8 ng mL?1. To check the selectivity of the proposed stripping voltammetric method for copper(II) ion, various metal ions as potential interferents were tested. The developed method was applied to copper(II) determination in certified reference material, NWRI‐TMDA‐61, trace elements in fortified water.  相似文献   

6.
《Electroanalysis》2006,18(1):70-76
A lead‐copper film electrode was proposed for Co(II) determination by catalytic adsorptive stripping voltammetry. The electrode was plated in situ and hence the exchange of a solution after plating step was not required. At optimized conditions the calibration graph for Co(II) was linear from 5×10?10 to 2×10?8 mol L?1 for accumulation time of 15 s. The relative standard deviation for Co(II) determination at concentration 5×10?9 mol L?1 was 4.1%. The detection limits for Co(II) were 1.2×10?10 and 1.0×10?11 mol L?1 for an accumulation time of 15 and 180 s, respectively. The method was applied to Co(II) determination in certified reference material and other water samples.  相似文献   

7.
The simultaneous determination of Zn and Cu by anodic stripping voltammetry (ASV) is prone to errors due to the formation of Cu‐Zn intermetallic compounds. The main aim of this work was to study the possibility of simultaneous determination of Zn and Cu, together with Hg and Pb, using a mercury‐free solid gold microwire electrode. The multi‐element detection was carried out by differential pulse anodic stripping voltammetry (DPASV), in a chloride medium (0.5 M NaCl) under moderate acid conditions (HCl 1.0 mM) in the presence of oxygen, where the gold microwire electrode was used as stationary or vibrating working electrode during the deposition step. Under these conditions, no formation of Cu‐Zn intermetallic compounds were found for concentrations usually determined in surface waters. In addition, quantification of Zn and Cu, together with Hg and Pb, can be performed in a wide range of concentrations (about two orders of magnitude) using the same sample, in a very short period of time. The detection limits for Cu, Hg, Pb and Zn, using a vibrating electrode and 30 s of deposition time, were 0.2 µg L?1 for Hg, 0.3 µg L?1 for Pb and 0.4 µg L?1 for Zn and Cu, respectively. The proposed DPASV methods were successfully applied to the determination of Cu, Hg, Pb, and Zn in a certified reference fresh water, river, tap and coastal sea waters. These results proved the applicability and versatility of the proposed methods for the analysis of different water matrices and showed that a gold microwire electrode is a suitable choice to determine simultaneously Zn and Cu.  相似文献   

8.
The antimony film electrode (SbFE) was prepared ex situ for anodic and adsorptive stripping voltammetric measurement of selected heavy metal ions. The electrode revealed good linearity for Cd(II) and Pb(II) in a nondeaerated solution of 0.01 M HCl in the examined concentration range from 25 to 80 μg L?1 with limits of detection of 1.1 μg L?1 for Cd(II) and 0.3 μg L?1 for Pb(II) and an excellent reproducibility. The preplated SbFE was also preliminary tested for measuring low levels of Ni(II) using adsorptive stripping voltammetry exhibiting good linearity and sensitivity in combination with only a 30 s deposition step.  相似文献   

9.
A chemically modified electrode was constructed for rapid, simple, accurate, selective and highly sensitive simultaneous determination of Cu(II) and Cd(II) using square wave anodic stripping voltammetry. The electrode was prepared by incorporation of SiO2 nanoparticles, coated with a newly synthesized Schiff base, in carbon paste electrode. The limit of detection was found to be 0.28 ng mL?1 and 0.54 ng mL?1 for Cu(II) and Cd(II), respectively. The proposed chemically modified electrode was used for the determination of copper and cadmium in several foodstuffs and water samples.  相似文献   

10.
Characteristic features of the process of Pb(II) reduction and oxidation at a renewable ceramic ring electrode (RCRE) were studied by stripping voltammetry. The main constituents of the RCRE are: a specially constructed TiN ring electrode, a silver sheet used as silver counter/quasi‐reference electrode and a silicon O‐ring are fastened together in a polypropylene body. The renovation of this electrode is carried out through mechanical removal of solid contaminants and electrochemical activation in the electrolyte which fills the RCRE body. The optimal measurement conditions, composition of supporting electrolyte and procedures of the electrode activation were selected. The measurements were carried out from nondeaerated solutions. As shown on selected examples, RCRE exhibits good performance in underpotential deposition stripping voltammetry (UPD‐SV) applied for the determination of lead(II) in synthetic solutions with and without surfactants and in certified reference materials. The peak current is proportional to the concentration of lead(II) over the range 2×10?9–1×10?7 mol L?1, with a 3σ detection limit of 1×10?9 mol L?1 with an accumulation time of 30 s. The obtained results showed good reproducibility, (RSD=2–5%; n=5) and reliability.  相似文献   

11.
《Analytical letters》2012,45(11):2273-2284
Abstract

A novel voltammetric method—anodic—using a bismuth/poly(aniline) film electrode has been developed for simultaneous measurement of Pb(II) and Cd(II) at low µg L?1 concentration levels by stripping voltammetry. The results confirmed that the bismuth/poly(aniline) film electrode offered high‐quality stripping performance compared with the bismuth film electrode. Well‐defined sharp stripping peaks were observed for Pb(II) and Cd(II), along with an extremely low baseline. The detection limits of Pb(II) and Cd(II) are 1.03 µg L?1 and 1.48 µg L?1, respectively. The bismuth/poly (aniline) electrode has been applied to the determination of Pb(II) in tap water samples with satisfactory results.  相似文献   

12.
The voltammetric performance of an in situ plated antimony film screen-printed carbon electrode in hydrochloric acid, acetate buffer, and tartrate buffer was evaluated for the detection of copper(II) with differential pulse anodic stripping voltammetry. The tartrate buffer was superior, providing high sensitivity and good separation of copper and antimony stripping peaks. The analytical conditions for the determination of copper(II) were optimized. The detection limit was estimated to be 0.14?µg?L?1 copper(II) and the relative standard deviation for 2.5?µg?L?1 copper(II) was 3%. The applicability of the method was illustrated by the analysis of soil conditioner samples.  相似文献   

13.
《Electroanalysis》2006,18(24):2486-2489
This paper presents the enhanced analysis of copper on a bismuth electrode upon addition of gallium(III). The presence of gallium alleviates the problems of overlapping stripping signals usually observed between copper and bismuth when using the Bismuth Film Electrode. In addition, it has been found that the presence of gallium improves the reproducibility of the bismuth stripping signal. Simultaneous deposition of copper and bismuth at ?1500 mV for 2 minutes in a supporting electrolyte composed of 0.1 M pH 4.75 acetate buffer with 250 μg L?1 gallium yields well resolved copper and bismuth signals when analyzed with square‐wave anodic stripping voltammetry. Simultaneous analysis of copper and lead yielded linear calibration plots in the range 10 to 100 μg L?1 with regression coefficients of 0.997 and 0.994 respectively. The theoretical detection limit for copper was calculated to be 4.98 μg L?1 utilizing a 2 minutes deposition time. The relative standard deviation for a copper concentration of 50 μg L?1 was 1.6% (n=10).  相似文献   

14.
A catalytic adsorptive stripping voltammetric method for the determination of copper(II) on a carbon paste electrode (PCE) in an alizarin red S (ARS)-K2S2O8 system is proposed. In this method, copper(II) is effectively enriched by both the formation and adsorption of a copper(II)-ARS complex on the PCE, and is determined by catalytic stripping voltammetry. The catalytic enhancement of the cathodic stripping current of the Cu(II) in the complex results from a redox cycle consisting of electrochemical reduction of Cu(II) ion in the complex and subsequent chemical oxidation of the Cu(II) reduction product by persulfate, which reduces the contamination of the working electrode from Cu deposition and also improves analytical sensitivity. In Britton-Robinson buffer (pH 4.56±0.1) containing 3.6×10−5 mol L−1 ARS and 1.6×10−3 mol L−1 K2S2O8, with 180 s of accumulation at −0.2 V, the second-order derivative peak current of the catalytic stripping wave was proportional to the copper(II) concentration in the range of 8.0×10−10 to ∼3.0×10−8 mol L−1. The detection limit was 1.6×10−10 mol L−1. The proposed method was evaluated by analyzing copper in water and soil.  相似文献   

15.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

16.
An electrochemical study of the anthelmintic drug bithionol using edge plane pyrolytic graphite electrode (EPPGE) is presented for the first time by applying different electrochemical techniques, such as cyclic voltammetry (CV), square‐wave voltammetry (SWV), square‐wave adsorptive stripping voltammetry (SWAdSV), and alternating current (AC) impedance spectroscopy. Mechanistic aspects of the electrode reaction were studied implying a quasireversible electrode reaction from an adsorbed state of the reactant, coupled with a follow‐up chemical reaction to a final electroinactive product. The overall mechanism appears totally irreversible under conditions of CV at moderate scan rate, while being quasireversible under conditions of the fast SWV. Furthermore, an optimisation of the analytical procedure for quantitative determination of bithionol was conducted by applying SWV in an adsorptive stripping mode. The calibration curve was constructed in the concentration range of 0.1–1.0 μmol L?1 (R2=0.9984) with a sensitivity of 3.6 μA L μmol?1 and LOD of 26.7 nmol L?1. The simple and sensitive SWAdSV procedure was proved to be suitable for the analysis of spiked urine samples.  相似文献   

17.
This article the first reports on a fabrication and application of an electrochemical three electrode micro‐set containing: in situ plated lead film on carbon fiber working microelectrode, Ag/AgCl reference electrode and a platinum wire counter electrode placed in one casing for simultaneous Ni(II) and Co(II) traces determination by square wave adsorptive stripping voltammetry (SW AdSV). Ni(II) and Co(II) in forms of their complexes with nioxime were accumulated on the lead film plated on a carbon fibers microelectrode during standard procedure of measurement. Thanks to the fact that measurements were performed in micro‐vessel of a volume of 200 μl small amounts of reagents were used to prepare samples for measurements. In addition, because of the use of microelectrode, sample solutions were not mixed during accumulation step of measurements. This fact creates the possibility of conducting fields analysis. The experimental parameters (composition of the supporting electrolyte, potential and time of accumulation) and possible interference effects were investigated. The linear calibration graphs for Ni(II) and Co(II) were in the range from 2×10?9 to 1×10?7 mol L?1 and from 2×10?10 to 1×10?8 mol L?1 for Ni(II) and Co(II), respectively. The correctness of the proposed method was checked by determining Ni(II) and Co(II) in the certified reference material (SPS‐SW1) with satisfactory results.  相似文献   

18.
A disposable screen‐printed device containing working, auxiliary, and reference electrodes is proposed for the simultaneous voltammetric determination of Zn(II), Pb(II), Cu(II), and Hg(II) in ethanol fuel. The working electrode was printed using an ink modified with 2‐benzothiazole‐2‐thiol organofunctionalized SBA‐15 silica, in order to increase sensitivity. The performance of this electrode was compared with that of bare and SBA‐15‐modified electrodes. After optimizing the experimental parameters, the device was applied in determination of the analytes in commercial ethanol fuel samples, using 0.10 mol L?1 KCl/ethanol ratios of 30 : 70 (v/v), with [H+]=10?5 mol L?1. After 5 min of preconcentration at ? 1.3 V (vs. pseudo‐Ag/AgCl), four well‐resolved signals were obtained, enabling simultaneous determination of the four analytes using a differential pulse anodic stripping voltammetry (DPASV) procedure. The limits of detection were 0.30, 0.065, 0.030, and 0.046 µmol L?1 for Zn(II), Pb(II), Cu(II), and Hg(II), respectively. The results of these analyses were in agreement with those obtained using graphite furnace atomic absorption spectroscopy (GFAAS) for Pb(II), Cu(II), and Hg(II), and high‐resolution continuum source flame atomic absorption spectrometry (HR‐CS‐FAAS) for Zn2+, at a 95 % confidence level. Analytes originally present in the samples could be detected, and the interference of some cations and anions was evaluated.  相似文献   

19.
We report the simultaneous electroanalytical determination of Pb2+ and Cd2+ by square‐wave anodic stripping voltammetry (SWASV) using a bismuth nanoparticle modified boron doped diamond (Bi‐BDD) electrode. Bi deposition was performed in situ with the analytes, from a solution of 0.1 mM Bi(NO3)3 in 0.1 M HClO4 (pH 1.2), and gave detection limits of 1.9 μg L?1 and 2.3 μg L?1 for Pb(II) and Cd(II) respectively. Pb2+ and Cd2+ could not be detected simultaneously at a bare BDD electrode, whilst on a bulk Bi macro electrode (BiBE) the limits of detection for the simultaneous determination of Pb2+ and Cd2+ were ca. ten times higher.  相似文献   

20.
A new way of decreasing the detection limit ‐ double deposition and stripping steps was proposed to determine trace amounts of gold(III) by anodic stripping voltammetry. Two carbon composite electrodes that differed drastically in their surface areas were used for the measurements. The calibration graph was linear from 1×10?9 to 1×10?8 mol L?1 following deposition time of 300 s at the first and the second electrode. The detection limit was found to be 2.3×10?10 and 1.4×10?11 mol L?1 for deposition time 600 and 2400 s, respectively. It is the lowest detection limit obtained so far for gold(III) determination in stripping voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号