首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With sulfonated electrospun polystyrene fiber as a template, uniform polyaniline(PANI) nanotubes were fabricated via polymerization of aniline followed by template removal. Au nanoparticles(Aunano) were decorated on the PANI nanotube successfully via auto-reduction of HAuCl4 on the PANI nanotube. The morphology of the nanotubes was characterized by means of scanning electron microscopy(SEM) and transmittance electron microscopy(TEM). By varying precursor concentration and incubation time, Aunano-PANI with different size of Aunano was obtained conveniently. Glassy carbon electrode modified with the Aunano decorated PANI nanotubes (Aunano-PANI/GCE) was prepared and used seccessfully for the catalytic oxidation of ascorbic acid(AA). The results of differential pulse voltammetry indicate that there is a good linear relationship between the peak currents and the concentrations of AA in the range of 5-3000 μmol/L, with the limit of detection of 1 μmol/L(S/N>3). There is no mutual interference between AA and dopamine. The electrode has been successfully applied in the detection of AA in vitamin C tablet sample.  相似文献   

2.
《Electroanalysis》2005,17(24):2281-2286
A poly(3,4‐ethylenedioxythiophene) (PEDOT) modified glassy carbon electrode (GCE) was used to determine uric acid in the presence of ascorbic acid at physiological pH facilitating a peak potential separation of ascorbic acid and uric acid oxidation (ca. 365 mV), which is the largest value reported so far in the literature. Also, an analytical protocol involving differential pulse voltammetry has been developed using a microchip electrode for the determination of uric acid in the concentration range of 1 to 20 μM in presence of excess of ascorbic acid.  相似文献   

3.
A supramolecular recognition functionalized electrode (βCD‐nanoAu/Fc‐ITO) which exhibits redox‐activity was prepared through supramolecular assembly of β‐cyclodextrin (βCD) capped gold nanoparticles (βCD‐nanoAu) on the ITO previously coated with a monolayer of ferrocene residues (Fc‐ITO). The immobilization of βCD‐nanoAu on Fc‐ITO was confirmed by atomic force microscopy (AFM), and the supramolecular nature of the immobilization approach was also confirmed by cyclic voltammetry. On the other hand, the electrocatalytic activity of βCD‐nanoAu/Fc‐ITO electrode was also studied. The electrocatalytic activity toward ascorbic acid (AA) was enhanced compared with that at the Fc‐ITO electrode, and a linear relationship existed between the anodic peak and the concentration of AA in the range of 5.3×10?5 to 3.0×10?3 M with a detection limit (S/N=3) of 4.1×10?6 M.  相似文献   

4.
A simple detection method of ascorbic acid (AA) through selective catalytic oxidation has been developed using a novel conducting polymer poly‐3′‐(2‐aminopyrimidyl)‐2,2′:5′,2“‐terthiophene (pAPTT). The pAPTT electrode showed an excellent selectivity in facilitating the electron transfer of AA and blocked the interferences of cationic species due to the positively charged pAPTT film. This method proved to be effective in the determination of AA in the presence of various biological interfering species. The dynamic range of AA detection was from 10 to 200 µM and the detection limit was 1.4±0.06 µM.  相似文献   

5.
《Analytical letters》2012,45(10):1875-1883
Abstract

A method is developed for the 2nd and 3rd order derivative spectrophotometric determination of 0.5–6 and 0.5–7 μ.ml?1 of ascorbic acid, respectively. For its determination in soft drinks a blank solution is prepared from the soft drink to be analyzed in order to avoid the interference from the other additives and colouring matter present.  相似文献   

6.
The selective amperometric determination of paracetamol in pharmaceutical formulations containing ascorbate was achieved by removing the interfering species in the diffusion layer created between a platinum substrate and a disc microelectrode in a Scanning Electrochemical Microscopy (SECM) configuration, while the target analyte was kept unconsumed. After complete depletion of ascorbate, paracetamol was detected at the SECM tip in a free‐interference solution zone. The influence of the substrate potential and the gap distance on the efficiency of ascorbate removal was systematically examined. The effectiveness of the device towards the determination of paracetamol in pharmaceutical samples was evaluated and under optimal conditions the results obtained agreed well with the labeled value.  相似文献   

7.
《Electroanalysis》2005,17(11):953-958
An electron transfer reaction between ascorbic acid (H2A) in an aqueous solution and oxidizing agent in an organic solution immiscible with water has been studied by thin‐layer cyclic voltammetry (TLCV) for charge transfer at the interface between two immiscible electrolyte solutions (ITIES). As an antioxidant, H2A provide electrons through the aqueous/organic interface to reduce Fc+ and the procedure has been proved to be a one electron process again. In this work, the first combination of TLCV and scanning electrochemical microscopy (SECM) was achieved and showed a reasonable agreement between the results from the two different approaches. Otherwise, lower concentration ratios Kr of aqueous to organic reactants was adopted, which is given as evidence to the proposed procedure of Barker.  相似文献   

8.
《Analytical letters》2012,45(15):2633-2643
Abstract

A new polymer (polyhistidine) modified electrode has been fabricated and was applied to the catalytic oxidation of ascorbic acid (AA), reducing the overpotential by 400 mV. The catalytic rate constant of the modified electrode for the oxidation of AA was determined using a rotating electrode. The catalytic current was linearly dependent on the ascorbic acid concentration between 5×10?5 and 2×10?3 M. The catalytic effect on the AA resulted in the separation of the overlapping voltammograms of AA and dopamine (DA) in a mixture. This allowed the determination of AA in the presence of DA. The electrode was rather stable even after several months; a reproducible response of AA was obtained.  相似文献   

9.
In this study, a nanocomposite of 3, 4, 9, 10‐perylenetetracarboxylic acid and L‐cysteine (PTCA‐Cys) with satisfactory water‐solubility and film‐forming ability was prepared and worked as substrate for modifying the glassy carbon electrode. Then, gold nanoparticles (AuNPs) were immobilized to achieve a PTCA‐Cys‐AuNPs modified electrode which provided more reaction positions on the sensor. Scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and different pulse voltammetry were employed to characterize the assembly process of the sensor. The constructed sensor displayed desirable sensitivity, selectivity and stability towards the simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Under the optimal experimental conditions, the oxidation peaks of AA, DA and UA appeared at 64, 240 and 376 mV, respectively. The corresponding linear response ranges were 3.2–435, 0.04–100 and 0.80–297 μM, and the detection limits were 1.1, 0.010 and 0.27 μM (S/N=3), respectively.  相似文献   

10.
《Electroanalysis》2003,15(8):739-746
A poly(allylamine)ferrocene monolayer was built on the surface of gold electrode modified with negatively charged alkanethiol based on electrostatic interaction. The electrochemical behavior of the modified electrode was characterized by cyclic voltammetry in detail. The modified electrode was shown to exhibit excellent electrocatalytic response to the oxidation of ascorbic acid. The anodic overpotential was reduced by about 170 mV compared with that obtained at a bare gold electrode. The modified electrode possesses several attractive features, such as simple preparation, fast response and good chemical and mechanical stability.  相似文献   

11.
《Analytical letters》2012,45(1):22-33
A three-dimensional L-cysteine (L-cys) monolayer assembled on gold nanoparticles (GNP) providing simultaneous detection of uric acid (UA) and ascorbic acid (AA) was studied in this work. The cyclic voltammetry demonstrated that, at a bare glassy carbon electrode (GCE) or planar gold electrode, the mixture of UA and AA showed one overlapped oxidation peak; whereas when the electrode was modified with GNP, the oxidation peaks for UA and AA were separated. While a GNP modified electrode was further modified with L-cys monolayer (L-cys/GNP/GCE), namely, three-dimensional L-cys monolayer, a better separation for UA and AA response was obtained. Interestingly, the L-cys monolayer-modified planar gold electrode presented a block effect on the oxidation of AA, which was facilitated by the three-dimensional L-cys monolayer attributed to its distinct structure. The pH of solution presented a noticeable effect on the separation of UA and AA at GNP modified electrodes with or without L-cys monolayer. Wide concentration ranges from 2 × 10?6?1 × 10?3 M to UA and 2 × 10?6?8 × 10?4 M to AA could be obtained at L-cys/GNP/GCE.  相似文献   

12.
《Electroanalysis》2006,18(8):807-813
The electrochemical oxidation of ascorbate ions is comparatively studied at polyaniline (PANI) and poly‐ortho‐methoxyaniline (POMA) layers in absence and presence of electrodeposited copper species. In comparison to PANI, POMA layers allow decreasing the overpotential necessary for driving the ascorbate oxidation reaction. A nonlinear dependence of the ascorbate oxidation current on the polymer layer redox charge is found. Copper electrodeposited in PANI and POMA layers is electrocatalytically active for the investigated reaction. Two separate oxidation waves are observed in the case of Cu‐PANI whereas a single ascorbate oxidation wave and enhanced currents are found in the Cu‐POMA case.  相似文献   

13.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3).  相似文献   

14.
Electrically conducting poly(3,4‐ethylenedioxythiophene) (PEDOT) film doped with silicomolybdate (SiMo12O404? or SiMo12) was synthesized by electrochemical polymerization. The synthesized film is capable of fast charge propagation during redox reactions in strong acid medium 0.2 M H2SO4 solution. The modified electrode was used towards reduction of bromate and successfully employed as an amperometric sensor for bromate and also above modified electrode was investigated for ascorbic acid oxidation.  相似文献   

15.
Poly(pyridine‐3‐boronic acid) (PPBA)/multiwalled carbon nanotubes (MWCNTs) composite modified glassy carbon electrode (GCE) was used for the simultaneous determination of ascorbic acid (AA), 3,4‐dihydroxyphenylacetic acid (DOPAC) and uric acid (UA). The anodic peaks for AA, DOPAC and UA at the PPBA/MWCNTs/GCE were well resolved in phosphate buffer solution (pH 7.4). The electrooxidation of AA, DOPAC and UA in the mixture solution was investigated. The peak currents increase with their concentrations increasing. The detection limits (S/N=3) of AA, DOPAC and UA are 5 µM, 3 µM and 0.6 µM, respectively.  相似文献   

16.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

17.
Uric acid (UA) was determined in the presence of ascorbic acid (AA) by using a carbon paste electrode modified superficially by a β‐cyclodextrin film (CPE/β‐CD). The surface carbon paste electrode was prepared applying a 30 cycles potential program and using a 1 M HClO4+0.01 M β‐CD electrolytic solution. The UA and AA solutions were used to evaluate the electrode selectivity and sensitivity by cyclic voltammetric and amperometric methods. In these experiments the detection limit for UA was (4.6±0.01)×10?6 M and the RSD calculated from the amperometric curves was 10%. From the data obtained it was possible to quantify UA in the urine and saliva samples. Selective detection of UA was improved by formation of an inclusion complex between β‐CD and UA. The results show that the CPE/β‐CD is a good candidate due to its selectivity and sensitivity in the UA determination in complex samples like the biological fluids.  相似文献   

18.
铁氰化镍修饰电极对抗坏血酸电催化氧化的研究   总被引:5,自引:0,他引:5  
抗坏血酸(AH_2)在玻碳和铂电极上的过电位较大,其电极反应不可逆.有关AH_2在碳及其它修饰电极上的电催化氧化已有一些报道,如减压热处理、Al_2O_3微粒研磨、普鲁士蓝修饰膜和聚乙烯二茂铁修饰膜等.本文研究了铁氰化镍修饰膜电极催化AH_2氧化的电化学行为.发现其阳极峰电流与AH_2浓度呈线性关系,可测定1×10~(-7)mol/L的AH_2,其灵敏度比聚乙烯二茂铁修饰电极提高一个数量级.用于蔬菜、水果中AH_2的测定,结果满意.  相似文献   

19.
研究了以抗坏血酸和氯金酸为生长溶液制备金纳米花的反应机理. 结果表明, 通过改变生长溶液中抗坏血酸浓度可以调节小尺寸的初级金粒子在种子表面的聚集方式及金纳米花的熟化速度, 从而影响金纳米花的形貌和光学性质. 协同改变抗坏血酸浓度和pH值, 可实现对金纳米花形貌及光学性质的有效调控. 表面增强拉曼散射(SERS)性能评价结果表明, 抗坏血酸还原法制备的金纳米花表面较清洁, 对罗丹明6G有较好的拉曼增强效果.  相似文献   

20.
A new sol‐gel carbon composite electrode using hexacyanoferrate (HCF)‐Th(IV) ion pair as a suitable modifier is fabricated in the present study. The Th(IV)‐HCF‐sol‐gel carbon composite electrode (THCF‐CCE) has been prepared by mixing methyl trimethoxysilan (MTMOS) sol‐gel precursor and carbon powder with ion pair and then to fix in a plastic tube. Cyclic voltammetry and chronoamperometry were employed to study the electrochemical and electrocatalytic properties of proposed electrode. The apparent charge transfer rate constant, ks, and transfer coefficient, α, for electron transfer between ion‐pair and sol‐gel CPE were calculated as 3.10 ± 0.10 s?1 and 0.52, respectively. The THCF‐CCE showed a significant electrocatalytic activity towards oxidation of ascorbic acid (AA) and dopamine (DA) in 0.1 M acidic phosphate buffer solutions (pH 3) containing KCl as a supporting electrolyte. The mean value of the diffusion coefficients for ascorbic acid and dopamine were found 4.12 × 10?5 and 4.43 × 10?5 (cm2s?1), respectively. High stability, good reproducibility, rapid response, easy surface regeneration and fabrication are the important characteristics of the proposed sensor. The resulting peaks from the electrocatalytic oxidation of AA and DA were well resolved with good sensitivity. A linear response was observed for AA and DA in the concentration range of 1 × 10?5 to 3 × 10?3 M and 4 × 10?6 to 2.2 × 10?4 M, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号