共查询到20条相似文献,搜索用时 0 毫秒
1.
An icosapeptide, 1 , containing the β3‐amino acid residues with the 20 proteinogenic side chains has been assembled by manual solid‐phase synthesis, according to the Fmoc strategy. The sequence was chosen in such a way that a possible 314‐helical conformation (secondary structure) would be stabilized by salt bridges and have an amphipathic character (Fig. 1,a), and the N‐terminal β3hCys would lend itself to thioligations and disulfide formation ( 2 and 3 , in Figs. 1 and 2). The products 1 – 3 were pure according to RP‐HPLC, NMR, and MS analysis (Fig. 1,b and c, Fig. 2,c and d, and Fig. 3). With due caution, the CD spectra in aqueous solution (pH 7) and in MeOH (Fig. 4), with normalized Cotton effects θ =?14000 to ?16000 [deg?cm2?dmol?1] between 209 and 210 nm, might be taken as an evidence for the presence of 314‐helical conformations. An evaluation of the data from a 700‐MHz 2D‐NMR measurement of the disulfide 2 in CD3OH is in progress. 相似文献
2.
Markus W. Weishaupt Stefan Matthies Prof. Dr. Peter H. Seeberger 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(37):12497-12503
β‐Glucans are a group of structurally heterogeneous polysaccharides found in bacteria, fungi, algae and plants. β‐(1,3)‐D ‐Glucans have been studied in most detail due to their impact on the immune system of vertebrates. The studies into the immunomodulatory properties of these glucans are typically carried out with isolates that contain a heterogeneous mixture of polysaccharides of different chain lengths and varying degrees of branching. In order to determine the structure–activity relationship of β‐(1,3)‐glucans, access to homogeneous, structurally‐defined samples of these oligosaccharides that are only available through chemical synthesis is required. The syntheses of β‐glucans reported to date rely on the classical solution‐phase approach. We describe the first automated solid‐phase synthesis of a β‐glucan oligosaccharide that was made possible by innovating and optimizing the linker and glycosylating agent combination. A β‐(1,3)‐glucan dodecasaccharide was assembled in 56 h in a stereoselective fashion with an average yield of 88 % per step. This automated approach provides means for the fast and efficient assembly of linker‐functionalized mono‐ to dodecasaccharide β‐(1,3)‐glucans required for biological studies. 相似文献
3.
4.
Dieter Seebach 《Helvetica chimica acta》2011,94(1):1-17
Fmoc‐β2hSer(tBu)‐OH was converted to Fmoc‐β2hSec(PMB)‐OH in five steps. To avoid elimination of HSeR, the selenyl group was introduced in the second last step (Fmoc‐β2hSer(Ts)‐OAll→Fmoc‐β2hSec(PMB)‐OAll). In a similar way, the N‐Boc‐protected compound was prepared. With the β2hSe‐derivatives, 21 β2‐amino‐acid building blocks with proteinogenic side chains are now available for peptide synthesis. 相似文献
5.
Isaak Beyer Dr. Nasrollah Rezaei‐Ghaleh Dr. Hans‐Wolfgang Klafki Dr. Olaf Jahn Dr. Ute Haußmann Prof. Dr. Jens Wiltfang Prof. Dr. Markus Zweckstetter Prof. Dr. Hans‐Joachim Knölker 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(25):8685-8693
In addition to the prototypic amyloid‐β (Aβ) peptides Aβ1–40 and Aβ1–42, several Aβ variants differing in their amino and carboxy termini have been described. Synthetic availability of an Aβ variant is often the key to study its role under physiological or pathological conditions. Herein, we report a protocol for the efficient solid‐phase peptide synthesis of the N‐terminally elongated Aβ‐peptides Aβ?3–38, Aβ?3–40, and Aβ?3–42. Biophysical characterization by NMR spectroscopy, CD spectroscopy, an aggregation assay, and electron microscopy revealed that all three peptides were prone to aggregation into amyloid fibrils. Immunoprecipitation, followed by mass spectrometry, indicated that Aβ?3–38 and Aβ?3–40 are generated by transfected cells even in the presence of a tripartite β‐site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. The elongated Aβ peptides starting at Val(?3) can be separated from N‐terminally‐truncated Aβ forms by high‐resolution isoelectric‐focusing techniques, despite virtually identical isoelectric points. The synthetic Aβ variants and the methods presented here are providing tools to advance our understanding of the potential roles of N‐terminally elongated Aβ variants in Alzheimer's disease. 相似文献
6.
Oliver Flögel Giulio Casi Donald Hilvert Dieter Seebach 《Helvetica chimica acta》2007,90(9):1651-1666
The title compounds, 4 and 7 , have been prepared from the corresponding α‐amino acid derivative selenocystine ( 1 ) by the following sequence of steps: cleavage of the Se? Se bond with NaBH4, p‐methoxybenzyl (PMB) protection of the SeH group, Fmoc or Boc protection at the N‐atom and Arndt–Eistert homologation (Schemes 1 and 2). A β3‐heptapeptide 8 with an N‐terminal β3‐hSec(PMB) residue was synthesized on Rink amide AM resin and deprotected (‘in air’) to give the corresponding diselenide 9 , which, in turn, was coupled with a β3‐tetrapeptide thiol ester 10 by a seleno‐ligation. The product β3‐undecapeptide was identified as its diselenide and its mixed selenosulfide with thiophenol (Scheme 3). The differences between α‐ and β‐Sec derivatives are discussed. 相似文献
7.
8.
Fmoc‐protected β‐aminoethane sulfonylchlorides can be employed for efficient automated solid phase synthesis of β‐peptidosulfonamides and β‐peptidosulfonamide/β‐peptide hybrids containing one or more β‐peptidosulfonamide residues. Thus, Fmoc‐protected β‐aminoethane sulfonylchlorides 5a – c led to the hexa‐β‐peptidosulfonamide 9 and the nona‐β‐peptidosulfonamide 10 . In addition, the β‐peptidosulfonamide/β‐peptide hybrids 13 and 16 , consisting of six and nine β‐residues, respectively, and containing a single β‐peptidosulfonamide unit in the middle, as well as the peptidosulfonamide/β‐peptide hybrid 15 with nine β‐residues, including an N‐terminal β‐peptidosulfonamide residue, were synthesized by automated solid‐phase synthesis. Both CD and NMR spectroscopic measurements did not indicate any helical secondary structure for 9 and 10 . As was shown by CD‐measurements, the β‐peptidosulfonamide residue in the hybrids 13, 15 , and 16 acts as a ‘helix breaker', especially when located in the middle of the hybrid chain ( 13 and 16 ), but, although to a lesser extent, also at the N‐terminus. 相似文献
9.
Grald Lelais Peter Micuch Delphine Josien‐Lefebvre Francesco Rossi Dieter Seebach 《Helvetica chimica acta》2004,87(12):3131-3159
The Ser, Cys, and His side chains play decisive roles in the syntheses, structures, and functions of proteins and enzymes. For our structural and biomedical investigations of β‐peptides consisting of amino acids with proteinogenic side chains, we needed to have reliable preparative access to the title compounds. The two β3‐homoamino acid derivatives were obtained by Arndt–Eistert methodology from Boc‐His(Ts)‐OH and Fmoc‐Cys(PMB)‐OH (Schemes 2–4), with the side‐chain functional groups' reactivities requiring special precautions. The β2‐homoamino acids were prepared with the help of the chiral oxazolidinone auxiliary DIOZ by diastereoselective aldol additions of suitable Ti‐enolates to formaldehyde (generated in situ from trioxane) and subsequent functional‐group manipulations. These include OH→OtBu etherification (for β2hSer; Schemes 5 and 6), OH→STrt replacement (for β2hCys; Scheme 7), and CH2OH→CH2N3→CH2NH2 transformations (for β2hHis; Schemes 9–11). Including protection/deprotection/re‐protection reactions, it takes up to ten steps to obtain the enantiomerically pure target compounds from commercial precursors. Unsuccessful approaches, pitfalls, and optimization procedures are also discussed. The final products and the intermediate compounds are fully characterized by retention times (tR), melting points, optical rotations, HPLC on chiral columns, IR, 1H‐ and 13C‐NMR spectroscopy, mass spectrometry, elemental analyses, and (in some cases) by X‐ray crystal‐structure analysis. 相似文献
10.
The preparation of three new N‐Fmoc‐protected (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) β2‐homoamino acids with proteinogenic side chains (from Ile, Tyr, and Met) is described, the key step being a diastereoselective amidomethylation of the corresponding Ti‐enolates of 3‐acyl‐4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐ones with CbzNHCH2OMe/TiCl4 (Cbz=(benzyloxy)carbonyl) in yields of 60–70% and with diastereoselectivities of >90%. Removal of the chiral auxiliary with LiOH or NaOH gives the N‐Cbz‐protected β‐amino acids, which were subjected to an N‐Cbz/N‐Fmoc (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) protective‐group exchange. The method is suitable for large‐scale preparation of Fmoc‐β2hXaa‐OH for solid‐phase syntheses of β‐peptides. The Fmoc‐amino acids and all compounds leading to them have been fully characterized by melting points, optical rotations, IR, 1H‐ and 13C‐NMR, and mass spectra, as well as by elemental analyses. 相似文献
11.
12.
The polystyrene‐supported α‐selenoacetic acid and α‐selenopropionic acid were prepared and used for the synthesis of 2‐alkenamides from primary and secondary amines in good yields and high purities. 相似文献
13.
14.
An all‐β3‐dodecapeptide with a protected N‐terminal thiol‐anchoring group and with seven side chains has been synthesized in multi‐mg amounts by the manual solid‐phase technique, applying Fmoc methodology and the Wang resin. The sequence is β‐HLys‐β‐HPhe‐β‐HTyr‐β‐HLeu‐β‐HLys‐β‐HSer‐β‐HLys‐β‐HPhe‐β‐HSer‐β‐HVal‐β‐HLys‐β‐HAla‐OH (from N‐ to C‐terminus; see 1 ). The functional groups in the side chains of the building blocks were Boc (β‐HLys) or t‐Bu ether (β‐HSer, β‐HTyr) protected to allow for simultaneous deprotection and detachment from the resin with trifluoroacetic acid. All coupling steps were achieved with HBTU (=O‐(1H‐benzotriazol‐1‐yl)‐1,1,3,3‐tetramethyl uronium hexafluorophosphate)/HOBt (=1‐hydroxy‐1H‐benzotriazole) in DMF. For Fmoc (=(9H‐fluoren‐9‐yl)methoxycarbonyl) deprotection, a protocol was developed to surmount the previously reported problems arising in solid‐phase synthesis of β‐peptides when the chain length exceeds seven or eight amino‐acid moieties: for up to seven amino acids, a 20% solution of piperidine in DMF was used for removal of Fmoc; for the subsequent five amino acids, DBU and piperidine were employed for complete deprotection. The crude product was purified by preparative reversed‐phase HPLC, and the yield of pure β‐dodecapeptide derivative ( 1 ) was 23%. As the compound is well‐soluble in H2O, it was characterized by 1H‐NMR (in MeOH and H2O), 13C‐NMR (in MeOH), and CD spectroscopy (in MeOH and in H2O at pH values ranging from 3.5 to 11), and its molecular weight and composition were confirmed by high‐resolution mass spectrometry (Figs. 1 – 4). In MeOH solution, the β‐dodecapeptide exhibits the expected CD pattern typical of an (M)‐314‐helical secondary structure. In H2O, however, the characteristic trough near 215 nm is missing in the CD spectrum, only a strong positive Cotton effect at 202 nm was observed, indicating the presence of β‐peptidic secondary structures, containing ten‐membered H‐bonded rings, such as the 12/10 helix (Fig. 4, right) or the hairpin. Only a detailed NMR solution‐structure analysis will provide the clues necessary for understanding the effects leading to the observed dramatic structural change of the highly functionalized β‐dodecapeptide described. 相似文献
15.
The known solid‐state structure (Fig. 1, top) of cyclo(β‐HAla)4 was used to model the structure of the title compound 1 as a prospective somatostatin mimic (Fig. 1, bottom). The synthesis started with the N‐protected natural amino acids Boc‐Phe‐OH, Boc‐Trp‐OH, Boc‐Lys(2‐Cl‐Z)‐OH, and Boc‐Thr(OBn)‐OH, which were homologated to the corresponding β‐amino‐acid derivatives (Scheme 1) and coupled to the β‐tetrapeptide Boc‐β‐HTrp‐β‐HPhe‐β‐HThr(OBn)‐β‐HLys(2‐Cl‐Z)‐OMe ( 16 ); the (N‐Me)‐β‐HThr‐(N‐Me)‐β‐HPhe analog 17 was also prepared. C‐ and N‐terminal deprotection and cyclization through the pentafluorophenyl ester gave the insoluble β‐tetrapeptide with protected Thr and Lys side chains ( 18 ). Solubilization and debenzylation could only be effected in LiCl‐containing THF (ca. 10% yield; with ca. 55% recovery). HPLC Purification provided a sample of the title compound 1 , the structure of which, as determined by NMR‐spectroscopy (Fig. 2, left) was drastically different from the `theoretical' model (Fig. 1). There is a transannular H‐bond dividing the macrocyclic 16‐membered ring, thus forming a ten‐ and a twelve‐membered H‐bonded ring, the former mimicking, or actually being superimposable on, an α‐peptidic so‐called β‐turn. Still, the four side chains occupy equatorial positions on the ring, as planned, albeit with somewhat different geometry as compared to the `original'. The cyclo‐β‐tetrapeptide has micromolar affinities to the human somatostatin receptors (hsst 1 – 5). Thus, we have demonstrated for the first time that it is possible to mimic a natural peptide hormone with a small β‐peptide. Furthermore, we have discovered a simple way to construct the ubiquitous β‐turn motif with β‐peptides (which are known to be stable to mammalian peptidases). 相似文献
16.
17.
Francois Gessier Laurent Schaeffer Thierry Kimmerlin Oliver Flgel Dieter Seebach 《Helvetica chimica acta》2005,88(8):2235-2250
The title compounds were prepared from valine‐derived N‐acylated oxazolidin‐2‐ones, 1 – 3, 7, 9 , by highly diastereoselective (≥ 90%) Mannich reaction (→ 4 – 6 ; Scheme 1) or aldol addition (→ 8 and 10 ; Scheme 2) of the corresponding Ti‐ or B‐enolates as the key step. The superiority of the ‘5,5‐diphenyl‐4‐isopropyl‐1,3‐oxazolidin‐2‐one’ (DIOZ) was demonstrated, once more, in these reactions and in subsequent transformations leading to various t‐Bu‐, Boc‐, Fmoc‐, and Cbz‐protected β2‐homoamino acid derivatives 11 – 23 (Schemes 3–6). The use of ω‐bromo‐acyl‐oxazolidinones 1 – 3 as starting materials turned out to open access to a variety of enantiomerically pure trifunctional and cyclic carboxylic‐acid derivatives. 相似文献
18.
19.