首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for the computational analysis of fluid–structure interaction of a Newtonian fluid with slender bodies is developed. It combines ideas of the fictitious domain and the mortar element method by imposing continuity of the velocity field along an interface by means of Lagrange multipliers. The key advantage of the method is that it circumvents the need for complicated mesh movement strategies common in arbitrary Lagrangian–Eulerian (ALE) methods, usually used for this purpose. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
3.
We present a fixed‐grid finite element technique for fluid–structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b‐spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision‐stabilisation technique is used to ensure inf–sup stability. The beam equations are discretised with b‐splines and the shell equations with subdivision basis functions, both leading to a rotation‐free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet–Robin partitioning scheme, and the fluid equations are solved with a pressure–correction method. Auxiliary techniques employed for improving numerical robustness include the level‐set based implicit representation of the structure interface on the fluid grid, a cut‐cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This work simulates a complex fluid flow in fluid–structure interaction (FSI). The flow under consideration is governed by Navier–Stokes equations for incompressible viscous fluids and modeled with the finite volume method. Large eddy simulation is used to simulate the unsteady turbulent flow. The structure is represented by a finite element formulation. The present work introduces a strongly coupled partitioned approach that is applied to complex flow in fluid machinery. In this approach, the fluid and structure equations are solved separately using different solvers, but are implicitly coupled into one single module based on sensitivity analysis of the important displacement and stress modes. The applied modes and their responses are used to build up a reduced‐order model. The proposed model is used to predict the unsteady flow fields of a 3D complete passage, involving in stay, guide vanes, and runner blades, for a Francis hydro turbine and FSI is considered. The computational results show that a fairly good convergence solution is achieved by using the reduced‐order model that is based on only a few displacement and stress modes, which largely reduces the computational cost, compared with traditional approaches. At the same time, a comparison of the numerical results of the model with available experimental data validates the methodology and assesses its accuracy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The paper presents a semi‐implicit algorithm for solving an unsteady fluid–structure interaction problem. The algorithm for solving numerically the fluid–structure interaction problems was obtained by combining the backward Euler scheme with a semi‐implicit treatment of the convection term for the Navier–Stokes equations and an implicit centered scheme for the structure equations. The structure is governed either by the linear elasticity or by the non‐linear St Venant–Kirchhoff elasticity models. At each time step, the position of the interface is predicted in an explicit way. Then, an optimization problem must be solved, such that the continuity of the velocity as well as the continuity of the stress hold at the interface. During the Broyden, Fletcher, Goldforb, Shano (BFGS) iterations for solving the optimization problem, the fluid mesh does not move, which reduces the computational effort. The term ‘semi‐implicit’ used for the fully algorithm means that the interface position is computed explicitly, while the displacement of the structure, velocity and the pressure of the fluid are computed implicitly. Numerical results are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
7.
8.
We present an operator‐splitting scheme for fluid–structure interaction (FSI) problems in hemodynamics, where the thickness of the structural wall is comparable to the radius of the cylindrical fluid domain. The equations of linear elasticity are used to model the structure, while the Navier–Stokes equations for an incompressible viscous fluid are used to model the fluid. The operator‐splitting scheme, based on the Lie splitting, separates the elastodynamics structure problem from a fluid problem in which structure inertia is included to achieve unconditional stability. We prove energy estimates associated with unconditional stability of this modular scheme for the full nonlinear FSI problem defined on a moving domain, without requiring any sub‐iterations within time steps. Two numerical examples are presented, showing excellent agreement with the results of monolithic schemes. First‐order convergence in time is shown numerically. Modularity, unconditional stability without temporal sub‐iterations, and simple implementation are the features that make this operator‐splitting scheme particularly appealing for multi‐physics problems involving FSI. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we propose a numerical algorithm for time‐dependent convection–diffusion–reaction problems and compare its performance with the well‐known numerical methods in the literature. Time discretization is performed by using fractional‐step θ‐scheme, while an economical form of the residual‐free bubble method is used for the space discretization. We compare the proposed algorithm with the classical stabilized finite element methods over several benchmark problems for a wide range of problem configurations. The effect of the order in the sequence of discretization (in time and in space) to the quality of the approximation is also investigated. Numerical experiments show the improvement through the proposed algorithm over the classical methods in either cases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Two mechanical models have been presented in this paper for structural failure prediction of piping systems conveying liquids subjected to pressure transients. One model takes into account the axial fluid–structure interaction (FSI) phenomenon between fluid and pipe motion, whereas the other refers to an extension of the well-known waterhammer formulation. Both models are described by a system of non-linear hyperbolic equations which are solved by using a numerical procedure based upon the operator splitting technique and Glimm's scheme. To implement Glimm's method, it is presented the solution of a 4×4 Riemann problem with discontinuous coefficients. Numerical predictions of both models are presented and compared, so that the influence of the FSI term on the failure analysis is focused on. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
12.
This paper presents the analysis of injection/suction boundary conditions in the context of the fluid–structure interactions simulation of the incompressible turbulent flow. First, the equations used in the modelling of the fluid and the structure are presented, as well as the numerical methods used in the corresponding solvers. Injection/suction boundary conditions are then presented with details of different implementation alternatives. Arbitrary Lagrangian–Eulerian (ALE) approach was also implemented in order to test the injection/suction boundary conditions. Numerical tests are performed where injection/suction boundary conditions are compared to ALE simulations. These tests include forced movement of the structure and two‐degrees‐of‐freedom structure model simulations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
A finite element model to solve the incompressible Navier–Stokes equations based on the stabilization with orthogonal subscales, a predictor–corrector scheme to segregate the pressure and a nodal based implementation is presented in this paper. The stabilization consists of adding a least‐squares form of the component orthogonal to the finite element space of the convective and pressure gradient terms, which allows to deal with convection‐dominated flows and to use equal velocity–pressure interpolation. The pressure segregation is inspired in fractional step schemes, although the converged solution corresponds to that of a monolithic time integration. Finally, the nodal‐based implementation is based on an a priori calculation of the integrals appearing in the formulation and then the construction of the matrix and right‐hand side vector of the final algebraic system to be solved. After appropriate approximations, this matrix and this vector can be constructed directly for each nodal point, without the need to loop over the elements and thus making the calculations much faster. Some issues related to this implementation for fractional step and our predictor–corrector scheme, which is the main contribution of this paper, are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations in curvilinear coordinates containing immersed boundaries (IBs) of arbitrary geometrical complexity moving and deforming under forces acting on the body. Since simulations of flow in complex geometries with deformable surfaces require special treatment, the present approach combines a hybrid immersed boundary method (HIBM) for handling complex moving boundaries and a material point method (MPM) for resolving structural stresses and movement. This combined HIBM & MPM approach is presented as an effective approach for solving fluid–structure interaction (FSI) problems. In the HIBM, a curvilinear grid is defined and the variable values at grid points adjacent to a boundary are forced or interpolated to satisfy the boundary conditions. The MPM is used for solving the equations of solid structure and communicates with the fluid through appropriate interface‐boundary conditions. The governing flow equations are discretized on a non‐staggered grid layout using second‐order accurate finite‐difference formulas. The discrete equations are integrated in time via a second‐order accurate dual time stepping, artificial compressibility scheme. Unstructured, triangular meshes are employed to discretize the complex surface of the IBs. The nodes of the surface mesh constitute a set of Lagrangian control points used for tracking the motion of the flexible body. The equations of the solid body are integrated in time via the MPM. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at stationary curvilinear grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. The influence of the fluid on the body is defined through pressure and shear stresses acting on the surface of the body. The HIBM & MPM approach is validated for FSI problems by solving for a falling rigid and flexible sphere in a fluid‐filled channel. The behavior of a capsule in a shear flow was also examined. Agreement with the published results is excellent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we present a finite element method with a residual‐based artificial viscosity for simulation of turbulent compressible flow, with adaptive mesh refinement based on a posteriori error estimation with sensitivity information from an associated dual problem. The artificial viscosity acts as a numerical stabilization, as shock capturing, and as turbulence capturing for large eddy simulation of turbulent flow. The adaptive method resolves parts of the flow indicated by the a posteriori error estimates but leaves shocks and turbulence under‐resolved in a large eddy simulation. The method is tested for examples in 2D and 3D and is validated against experimental data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Embedded boundary methods for CFD (computational fluid dynamics) simplify a number of issues. These range from meshing the fluid domain, to designing and implementing Eulerian‐based algorithms for fluid–structure applications featuring large structural motions and/or deformations. Unfortunately, embedded boundary methods also complicate other issues such as the treatment of the wall boundary conditions in general, and fluid–structure transmission conditions in particular. This paper focuses on this aspect of the problem in the context of compressible flows, the finite volume method for the fluid, and the finite element method for the structure. First, it presents a numerical method for treating simultaneously the fluid pressure and velocity conditions on static and dynamic embedded interfaces. This method is based on the exact solution of local, one‐dimensional, fluid–structure Riemann problems. Next, it describes two consistent and conservative approaches for computing the flow‐induced loads on rigid and flexible embedded structures. The first approach reconstructs the interfaces within the CFD solver. The second one represents them as zero level sets, and works instead with surrogate fluid/structure interfaces. For example, the surrogate interfaces obtained simply by joining contiguous segments of the boundary surfaces of the fluid control volumes that are the closest to the zero level sets are explored in this work. All numerical algorithms presented in this paper are applicable with any embedding CFD mesh, whether it is structured or unstructured. Their performance is illustrated by their application to the solution of three‐dimensional fluid–structure interaction problems associated with the fields of aeronautics and underwater implosion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A robust, accurate, and computationally efficient interface tracking algorithm is a key component of an embedded computational framework for the solution of fluid–structure interaction problems with complex and deformable geometries. To a large extent, the design of such an algorithm has focused on the case of a closed embedded interface and a Cartesian computational fluid dynamics grid. Here, two robust and efficient interface tracking computational algorithms capable of operating on structured as well as unstructured three‐dimensional computational fluid dynamics grids are presented. The first one is based on a projection approach, whereas the second one is based on a collision approach. The first algorithm is faster. However, it is restricted to closed interfaces and resolved enclosed volumes. The second algorithm is therefore slower. However, it can handle open shell surfaces and underresolved enclosed volumes. Both computational algorithms exploit the bounding box hierarchy technique and its parallel distributed implementation to efficiently store and retrieve the elements of the discretized embedded interface. They are illustrated, and their respective performances are assessed and contrasted, with the solution of three‐dimensional, nonlinear, dynamic fluid–structure interaction problems pertaining to aeroelastic and underwater implosion applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We present a method for the parallel numerical simulation of transient three‐dimensional fluid–structure interaction problems. Here, we consider the interaction of incompressible flow in the fluid domain and linear elastic deformation in the solid domain. The coupled problem is tackled by an approach based on the classical alternating Schwarz method with non‐overlapping subdomains, the subproblems are solved alternatingly and the coupling conditions are realized via the exchange of boundary conditions. The elasticity problem is solved by a standard linear finite element method. A main issue is that the flow solver has to be able to handle time‐dependent domains. To this end, we present a technique to solve the incompressible Navier–Stokes equation in three‐dimensional domains with moving boundaries. This numerical method is a generalization of a finite volume discretization using curvilinear coordinates to time‐dependent coordinate transformations. It corresponds to a discretization of the arbitrary Lagrangian–Eulerian formulation of the Navier–Stokes equations. Here the grid velocity is treated in such a way that the so‐called Geometric Conservation Law is implicitly satisfied. Altogether, our approach results in a scheme which is an extension of the well‐known MAC‐method to a staggered mesh in moving boundary‐fitted coordinates which uses grid‐dependent velocity components as the primary variables. To validate our method, we present some numerical results which show that second‐order convergence in space is obtained on moving grids. Finally, we give the results of a fully coupled fluid–structure interaction problem. It turns out that already a simple explicit coupling with one iteration of the Schwarz method, i.e. one solution of the fluid problem and one solution of the elasticity problem per time step, yields a convergent, simple, yet efficient overall method for fluid–structure interaction problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The finite volume method with exact two‐phase Riemann problems (FIVER) is a two‐faceted computational method for compressible multi‐material (fluid–fluid, fluid–structure, and multi‐fluid–structure) problems characterized by large density jumps, and/or highly nonlinear structural motions and deformations. For compressible multi‐phase flow problems, FIVER is a Godunov‐type discretization scheme characterized by the construction and solution at the material interfaces of local, exact, two‐phase Riemann problems. For compressible fluid–structure interaction (FSI) problems, it is an embedded boundary method for computational fluid dynamics (CFD) capable of handling large structural deformations and topological changes. Originally developed for inviscid multi‐material computations on nonbody‐fitted structured and unstructured grids, FIVER is extended in this paper to laminar and turbulent viscous flow and FSI problems. To this effect, it is equipped with carefully designed extrapolation schemes for populating the ghost fluid values needed for the construction, in the vicinity of the fluid–structure interface, of second‐order spatial approximations of the viscous fluxes and source terms associated with Reynolds averaged Navier–Stokes (RANS)‐based turbulence models and large eddy simulation (LES). Two support algorithms, which pertain to the application of any embedded boundary method for CFD to the robust, accurate, and fast solution of FSI problems, are also presented in this paper. The first one focuses on the fast computation of the time‐dependent distance to the wall because it is required by many RANS‐based turbulence models. The second algorithm addresses the robust and accurate computation of the flow‐induced forces and moments on embedded discrete surfaces, and their finite element representations when these surfaces are flexible. Equipped with these two auxiliary algorithms, the extension of FIVER to viscous flow and FSI problems is first verified with the LES of a turbulent flow past an immobile prolate spheroid, and the computation of a series of unsteady laminar flows past two counter‐rotating cylinders. Then, its potential for the solution of complex, turbulent, and flexible FSI problems is also demonstrated with the simulation, using the Spalart–Allmaras turbulence model, of the vertical tail buffeting of an F/A‐18 aircraft configuration and the comparison of the obtained numerical results with flight test data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The numerical simulation of complex flows demands efficient algorithms and fast computer platforms. The use of adaptive techniques permits adjusting the discretisation according to the analysis requirements, but creates variable computational loads that are difficult to manage in a parallel/vector program. This paper describes the approach adopted to implement an adaptive finite element incompressible Navier–Stokes solver on the Cray J90 machine. Performance measurements for the simulation of free and forced convection incompressible flows indicate that the techniques employed result in a fast parallel/vector code. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号