首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large eddy simulation based on filtered vorticity transport equation has been coupled with filtered probability density function transport equation for scalar field, to predict the velocity and passive scalar fields. The filtered vorticity transport has been formulated using diffusion‐velocity method and then solved using the vortex method. The methodology has been tested on a spatially growing mixing layer using the two‐dimensional vortex‐in‐cell method in conjunction with both Smagorinsky and dynamic eddy viscosity subgrid scale models for an anisotropic flow. The transport equation for filtered probability density function is solved using the Lagrangian Monte‐Carlo method. The unresolved subgrid scale convective term in filtered density function transport is modelled using the gradient diffusion model. The unresolved subgrid scale mixing term is modelled using the modified Curl model. The effects of subgrid scale models on the vorticity contours, mean streamwise velocity profiles, root‐mean‐square velocity and vorticity fluctuations profiles and negative cross‐stream correlations are discussed. Also the characteristics of the passive scalar, i.e. mean concentration profiles, root‐mean‐square concentration fluctuations profiles and filtered probability density function are presented and compared with previous experimental and numerical works. The sensitivity of the results to the Schmidt number, constant in mixing frequency and inflow boundary conditions are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A large eddy simulation based on the filtered vorticity transport equation and the filtered density function (FDF) transport equation developed in an earlier study is extended to predict a chemically reacting flow with no heat release. The filtered vorticity transport equation is solved using the vortex‐in‐cell scheme in conjunction with the dynamic eddy viscosity subgrid‐scale models. The transport equation for FDF is solved using the Lagrangian Monte‐Carlo method. The methodology is tested on a chemically reacting spatially growing mixing layer with no heat release. The effects of Damköhler number (Da) on the concentration structure of the reacting mixing layer, the mean reactant and product concentrations and on the reactant FDF are investigated. It is shown that mixing has a greater effect on scalar field within the vortex structure as compared with the braid regions. Also for high Da, the reaction zones are mainly limited to the thin reacting interfacial zones, i.e. the contact zone between the reactants, whereas for low Da, the reacting zones are spread as reacting pockets within the vortex structure. The effects of Da on mean reactant and product concentrations, root‐mean‐square concentration fluctuations and probability density are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
An improved near‐wall modeling for large‐eddy simulation using the immersed boundary method is proposed. It is shown in this study that the existing near‐wall modeling for the immersed boundary (IB) methods that imposes the velocity boundary condition at the IB node is not sufficient to enforce a correct wall shear stress at the IB node. A new method that imposes a shear stress condition through the modification of the subgrid scale‐eddy viscosity at the IB node is proposed. In this method, the subgrid eddy viscosity at the IB node is modified such that the viscous flux at the face adjacent to the IB node correctly approximates the total shear stress. The method is applied to simulate the fully developed turbulent flows in a plane channel and a circular pipe. It is demonstrated that the new method improves the prediction of the mean velocity and turbulence stresses in comparison with the existing wall modeling based solely on the velocity boundary condition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a solution algorithm based on an immersed boundary (IB) method that can be easily implemented in high‐order codes for incompressible flows. The time integration is performed using a predictor‐corrector approach, and the projection method is used for pressure‐velocity coupling. Spatial discretization is based on compact difference schemes and is performed on half‐staggered meshes. A basic algorithm for body‐fitted meshes using the aforementioned solution method was developed by A. Tyliszczak (see article “A high‐order compact difference algorithm for half‐staggered grids for laminar and turbulent incompressible flows” in Journal of Computational Physics) and proved to be very accurate. In this paper, the formulated algorithm is adapted for use with the IB method in the framework of large eddy simulations. The IB method is implemented using its simplified variant without the interpolation (stepwise approach). The computations are performed for a laminar flow around a 2D cylinder, a turbulent flow in a channel with a wavy wall, and around a sphere. Comparisons with literature data confirm that the proposed method can be successfully applied for complex flow problems. The results are verified using the classical approach with body‐fitted meshes and show very good agreement both in laminar and turbulent regimes. The mean (velocity and turbulent kinetic energy profiles and drag coefficients) and time‐dependent (Strouhal number based on the drag coefficient) quantities are analyzed, and they agree well with reference solutions. Two subfilter models are compared, ie, the model of Vreman (see article “An eddy‐viscosity subgrid‐scale model for turbulent shear flow: algebraic theory and applications” in Physics and Fluids) and σ model (Nicoud et al, see article “Using singular values to build a subgrid‐scale model for large eddy simulations” in Physics and Fluids). The tests did not reveal evident advantages of any of these models, and from the point of view of solution accuracy, the quality of the computational meshes turned out to be much more important than the subfilter modeling.  相似文献   

5.
6.
A new vortex particle‐in‐cell method for the simulation of three‐dimensional unsteady incompressible viscous flow is presented. The projection of the vortex strengths onto the mesh is based on volume interpolation. The convection of vorticity is treated as a Lagrangian move operation but one where the velocity of each particle is interpolated from an Eulerian mesh solution of velocity–Poisson equations. The change in vorticity due to diffusion is also computed on the Eulerian mesh and projected back to the particles. Where diffusive fluxes cause vorticity to enter a cell not already containing any particles new particles are created. The surface vorticity and the cancellation of tangential velocity at the plate are related by the Neumann conditions. The basic framework for implementation of the procedure is also introduced where the solution update comprises a sequence of two fractional steps. The method is applied to a problem where an unsteady boundary layer develops under the impact of a vortex ring and comparison is made with the experimental and numerical literature. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A new vortex particle‐in‐cell (PIC) method is developed for the computation of three‐dimensional unsteady, incompressible viscous flow in an unbounded domain. The method combines the advantages of the Lagrangian particle methods for convection and the use of an Eulerian grid to compute the diffusion and vortex stretching. The velocity boundary conditions used in the method are of Dirichlet‐type, and can be calculated using the vorticity field on the grid by the Biot–Savart equation. The present results for the propagation speed of the single vortex ring are in good agreement with the Saffman's model. The applications of the method to the head‐on and head‐off collisions of the two vortex rings show good agreement with the experimental and numerical literature. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
It has been well established that large‐scale structures, usually called coherent structures, exist in many transitional and turbulent flows. The topology and range of scales of those large‐scale structures vary from flow to flow such as counter‐rotating vortices in wake flows, streaks and hairpin vortices in turbulent boundary layer. There has been relatively little study of large‐scale structures in separated and reattached transitional flows. Large‐eddy simulation (LES) is employed in the current study to investigate a separated boundary layer transition under 2% free‐stream turbulence on a flat plate with a blunt leading edge. The Reynolds number based on the inlet free stream velocity and the plate thickness is 6500. A dynamic subgrid‐scale model is employed to compute the subgrid‐scale stresses more accurately in the current transitional flow case. Flow visualization has shown that the Kelvin–Helmholtz rolls, which have been so clearly visible under no free‐stream turbulence (NFST) are not as apparent in the present study. The Lambda‐shaped vortical structures which can be clearly seen in the NFST case can hardly be identified in the free‐stream turbulence (FST) case. Generally speaking, the effects of free‐stream turbulence have led to an early breakdown of the boundary layer, and hence increased the randomization in the vortical structures, degraded the spanwise coherence of those large‐scale structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The physical space version of the stretched vortex subgrid scale model is tested in LES of the turbulent lid‐driven cubic cavity flow. LES is carried out by using a higher order finite‐difference method. The effects of different vortex orientation models and subgrid turbulence spectrums are assessed through comparisons of the LES predictions against DNS. Three Reynolds numbers 12000, 18000, and 22000 are studied. Good agreement with the DNS data for the mean and fluctuating quantities is observed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
We investigate the effectiveness of the partition‐of‐unity method (PUM) for convection–diffusion problems. We show that for the linear diffusion equation, an exponential enrichment function based on an approximation of the analytic solution leads to improved accuracy compared to the standard finite‐element method. It is illustrated that this approach can be more efficient than using polynomial enrichment to increase the order of the scheme. We argue that the PUM enrichment, can be interpreted as a subgrid‐scale model in a multiscale framework, and that the choice of enrichment function has consequences for the stabilization properties of the method. The exponential enrichment is shown to function as a near optimal subgrid‐scale model for linear convection. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
本文采用三种不同亚网格尺度模型对带有V型稳定器的模型燃烧室二维瞬态紊流流动进行了大涡模拟。并在交错网格系下用SIMPLE算法和混合差分格式求解离散方程。数值研究拟不同型式入口速度分布和不同亚网格尺度模型下模型燃烧室二维瞬态紊流流场。计算结果表明不同入口速度分布和不同亚网格尺度模型对瞬态流场和出口速度分布有一定的影响。本文通过数值模拟,揭示了V型稳定器后旋涡的产生和脱落过程。通过计算结果及实验数据的比较可知,本文采用的亚网格尺度模型可以用来模拟模型燃烧室紊流流场及稳定器后面回流区的流动情况。  相似文献   

12.
Smagorinsky‐based models are assessed in a turbulent channel flow simulation at Reb=2800 and Reb=12500. The Navier–Stokes equations are solved with three different grid resolutions by using a co‐located finite‐volume method. Computations are repeated with Smagorinsky‐based subgrid‐scale models. A traditional Smagorinsky model is implemented with a van Driest damping function. A dynamic model assumes a similarity of the subgrid and the subtest Reynolds stresses and an explicit filtering operation is required. A top‐hat test filter is implemented with a trapezoidal and a Simpson rule. At the low Reynolds number computation none of the tested models improves the results at any grid level compared to the calculations with no model. The effect of the subgrid‐scale model is reduced as the grid is refined. The numerical implementation of the test filter influences on the result. At the higher Reynolds number the subgrid‐scale models stabilize the computation. An analysis of an accurately resolved flow field reveals that the discretization error overwhelms the subgrid term at Reb=2800 in the most part of the computational domain. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
A novel dynamic mixing length (DML) subgrid‐scale model for large eddy simulations is proposed in this work to improve the cutoff length of the Smagorinsky model. The characteristic mixing length (or the characteristic wave number) is dynamically estimated for the subgrid‐scale fluctuation of turbulence by the cutoff wave‐number, kc, and the dissipation wave‐number, kd. The dissipation wave number is derived from the kinetic energy spectrum equation and the dissipation spectrum equation. To prove the promise of the DML model, this model is used to simulate the lid‐driven cubical cavity with max‐velocity‐based Reynolds numbers 8850 and 12,000, the channel flows with friction‐velocity‐based Reynolds numbers 180, 395, 590, and 950, and the turbulent flow past a square cylinder at the higher Reynolds number 21,400, respectively, compared with the Smagorinsky model and Germano et al.'s dynamic Smagorinsky model. Different numerical experiments with different Reynolds numbers show that the DML model can be used in simulations of flows with a wide range of Reynolds numbers without the occurrence of singular values. The DML model can alleviate the dissipation of the Smagorinsky model without the loss of its robustness. The DML model shows some advantages over Germano et al.'s dynamic Smagorinsky model in its high stability and simplicity of calculation because the coefficient of the DML model always stays positive. The characteristic mixing length in the DML model reflects the subgrid‐scale fluctuation of turbulence in nature and thus the characteristic mixing length has a spatial and temporal distribution in turbulent flow. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Generalized Lattice Boltzmann equation (GLBE) was used for computation of turbulent channel flow for which large eddy simulation (LES) was employed as a turbulence model. The subgrid‐scale turbulence effects were simulated through a shear‐improved Smagorinsky model (SISM), which is capable of predicting turbulent near wall region accurately without any wall function. Computations were done for a relatively coarse grid with shear Reynolds number of 180 in a parallelized code. Good numerical stability was observed for this computational framework. The results of mean velocity distribution across the channel showed good correspondence with direct numerical simulation (DNS) data. Negligible discrepancies were observed between the present computations and those reported from DNS for the computed turbulent statistics. Three‐dimensional instantaneous vorticity contours showed complex vortical structures that appeared in such flow geometries. It was concluded that such a framework is capable of predicting accurate results for turbulent channel flow without adding significant complications and the computational cost to the standard Smagorinsky model. As this modeling was entirely local in space it was therefore adapted for parallelization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We present a new modelling strategy for improving the efficiency of computationally intensive flow problems in environmental free‐surface flows. The approach combines a recently developed semi‐implicit subgrid method with a hierarchical grid solution strategy. The method allows the incorporation of high‐resolution data on subgrid scale to obtain a more accurate and efficient hydrodynamic model. The subgrid method improves the efficiency of the hierarchical grid method by providing better solutions on coarse grids. The method is applicable to both steady and unsteady flows, but we particularly focus on river flows with steady boundary conditions. There, the combined hierarchical grid–subgrid method reduces the computational effort to obtain a steady state with factors up to 43. For unsteady models, the method can be used for efficiently generating accurate initial conditions on high‐resolution grids. Additionally, the method provides automatic insight in grid convergence. We demonstrate the efficiency and applicability of the method using a schematic test for the vortex shedding around a circular cylinder and a real‐world river case study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This work investigates a high‐order numerical method which is suitable for performing large‐eddy simulations, particularly those containing wall‐bounded regions which are considered on stretched curvilinear meshes. Spatial derivatives are represented by a sixth‐order compact approximation that is used in conjunction with a tenth‐order non‐dispersive filter. The scheme employs a time‐implicit approximately factored finite‐difference algorithm, and applies Newton‐like subiterations to achieve second‐order temporal and sixth‐order spatial accuracy. Both the Smagorinsky and dynamic subgrid‐scale stress models are incorporated in the computations, and are used for comparison along with simulations where no model is employed. Details of the method are summarized, and a series of classic validating computations are performed. These include the decay of compressible isotropic turbulence, turbulent channel flow, and the subsonic flow past a circular cylinder. For each of these cases, it was found that the method was robust and provided an accurate means of describing the flowfield, based upon comparisons with previous existing numerical results and experimental data. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

17.
A computational study of a high‐fidelity, implicit large‐eddy simulation (ILES) technique with and without the use of the dynamic Smagorinsky subgrid‐scale (SGS) model is conducted to examine the contributions of the SGS model on solutions of transitional flow over the SD7003 airfoil section. ILES without an SGS model has been shown in the past to produce comparable and sometimes favorable results to traditional SGS‐based large‐eddy simulation (LES) when applied to canonical turbulent flows. This paper evaluates the necessity of the SGS model for low‐Reynolds number airfoil applications to affirm the use of ILES without SGS‐modeling for a broader class of problems such as those pertaining to micro air vehicles and low‐pressure turbines. It is determined that the addition of the dynamic Smagorinsky model does not significantly affect the time‐mean flow or statistical quantities measured around the airfoil section for the spatial resolutions and Reynolds numbers examined in this study. Additionally, the robustness and reduced computational cost of ILES without the SGS model demonstrates the attractiveness of ILES as an alternative to traditional LES. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

18.
A new approach to turbulence simulation, based on a combination of large eddy simulation (LES) for the whole flow and an array of non–space‐filling quasi‐direct numerical simulations (QDNS), which sample the response of near‐wall turbulence to large‐scale forcing, is proposed and evaluated. The technique overcomes some of the cost limitations of turbulence simulation, since the main flow is treated with a coarse‐grid LES, with the equivalent of wall functions supplied by the near‐wall sampled QDNS. Two cases are tested, at friction Reynolds number Reτ=4200 and 20000. The total grid point count for the first case is less than half a million and less than 2 million for the second case, with the calculations only requiring a desktop computer. A good agreement with published direct numerical simulation (DNS) is found at Reτ=4200, both in the mean velocity profile and the streamwise velocity fluctuation statistics, which correctly show a substantial increase in near‐wall turbulence levels due to a modulation of near‐wall streaks by large‐scale structures. The trend continues at Reτ=20000, in agreement with experiment, which represents one of the major achievements of the new approach. A number of detailed aspects of the model, including numerical resolution, LES‐QDNS coupling strategy and subgrid model are explored. A low level of grid sensitivity is demonstrated for both the QDNS and LES aspects. Since the method does not assume a law of the wall, it can in principle be applied to flows that are out of equilibrium.  相似文献   

19.
In this article, large eddy simulation is used to simulate homogeneous shear flows. The spatial discretization is accomplished by the spectral collocation method and a third‐order Runge–Kutta method is used to integrate the time‐dependent terms. For the estimation of the subgrid‐scale stress tensor, the Smagorinsky model, the dynamic model, the scale‐similarity model and the mixed model are used. Their predicting performance for homogeneous shear flow is compared accordingly. The initial Reynolds number varies from 33 to 99 and the initial shear number is 2. Evolution of the turbulent kinetic energy, the growth rate, the anisotropy component and the subgrid‐scale dissipation rate is presented. In addition, the performance of several filters is examined. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号