共查询到20条相似文献,搜索用时 15 毫秒
1.
Part I of this work presents a detailed multi‐methods comparison of the spatial errors associated with the one‐dimensional finite difference, finite element and finite volume semi‐discretizations of the scalar advection–diffusion equation. In Part II we extend the analysis to two‐dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one‐dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control‐volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out‐perform their lumped mass counterparts and finite‐difference based schemes. While this work can only be considered a first step in a comprehensive multi‐methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd. 相似文献
2.
This paper addresses the problem of estimating the residence times in a marine basin of a passive constituent released in the sea. The dispersion process is described by an advection–diffusion model and the hydrodynamics is assumed to be known. We have performed the analysis of two different scenarios: (i) basins with unidirectional flows, in three space dimensions and under the rigid lid approximation, and (ii) basins with flows forced by the tide, under the shallow water approximation. Let the random variable τ be defined as the time spent in the basin by a particle released at a given point. The probability distribution of τ is obtained from the solution of the advection–diffusion problem and the residence time of a particle is defined as the mean value of τ. Two different numerical approximations have been used to solve the continuous problem: the finite volume and Monte Carlo methods. For both continuous and discrete formulations it is proved that if all the particles eventually leave the basin, then the residence time has a finite value. We present here the results obtained for two study cases: a two- dimensional basin with a steady flow and a one-dimensional channel with flow induced by the tide. The results obtained by the finite volume and Monte Carlo methods are in very good agreement for both scenarios. 相似文献
3.
Recently, we developed an explicit a posteriori error estimator especially suited for fluid dynamics problems solved with a stabilized method. The technology is based upon the theory that inspired stabilized methods, namely, the variational multiscale theory. The salient features of the formulation are that it can be readily implemented in existing codes, it is a very economical procedure, and it yields very accurate local error estimates uniformly from the diffusive to the advective regime. In this work, the variational multiscale error estimator is applied to develop adaptive strategies for the advection–diffusion‐reaction equation. The performance of L1 and L2 local error norms combined with three strategies to adapt the mesh is investigated. Emphasis is placed on flows with sharp boundary and interior layers but also attention is given to diffusion‐dominated flows. Computational results show that the method generates meshes with a smooth transition of the element size, which capture all the flow features. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
Multidimensional residual distribution schemes for the convection–diffusion equation are described. Compact upwind cell vertex schemes are used for the discretization of the convective term. For the diffusive term, two approaches are compared: the classical finite element Galerkin formulation, which preserves the compactness of the stencil used for the convective part, and various residual-based approaches in which the diffusive term, evaluated after a reconstruction step, is upwinded along with the convective term. 相似文献
5.
David F. Griffiths 《国际流体数值方法杂志》1997,24(4):393-411
We use a one-dimensional model problem of advection– diffusion to investigate the treatment recently advocated by Papanastasiou and colleagues to deal with boundary conditions at artificial outflow boundaries. Using finite elements of degree p, we show that their treatment is equivalent to imposing the condition that the (p+1 )st derivative of the dependent variable should vanish at a point close to the outflow. This is then shown to lead to errors of order 𝒪((h+1/Pe)1.6p+1) in the numerical solutions (where h is the maximum element size and Pe is the global Peclet number), which is superior to the errors of order 𝒪(hp+1+1/Pe) obtained using a standard no-flux outflow condition. These findings are verified by numerical experiments. © 1997 by John Wiley and Sons, Ltd. 相似文献
6.
A. Pestiaux S.A. Melchior J.F. Remacle T. Kärnä T. Fichefet J. Lambrechts 《国际流体数值方法杂志》2014,75(5):365-384
The discretization of a diffusion equation with a strong anisotropy by a discontinuous Galerkin finite element method is investigated. This diffusion term is implemented in the tracer equation of an ocean model, thanks to a symmetric tensor that is composed of diapycnal and isopycnal diffusions. The strong anisotropy comes from the difference of magnitude order between both diffusions. As the ocean model uses interior penalty terms to ensure numerical stability, a new penalty factor is required in order to correctly deal with the anisotropy of this diffusion. Two penalty factors from the literature are improved and established from the coercivity property. One of them takes into account the diffusion in the direction normal to the interface between the elements. After comparison, the latter is better because the spurious numerical diffusion is weaker than with the penalty factor proposed in the literature. It is computed with a transformed coordinate system in which the diffusivity tensor is diagonal, using its eigenvalue decomposition. Furthermore, this numerical scheme is validated with the method of manufactured solutions. It is finally applied to simulate the evolution of temperature and salinity due to turbulent processes in an idealized Arctic Ocean. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
We introduce a new submesh strategy for the two‐level finite element method. The numerical results show that the new submesh is able to better capture the boundary layer which is caused by the choice of bubble functions. The effect of an improved approximation of the residual free bubbles is studied for the advective–diffusive equation. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
8.
Robert T. Bailey 《国际流体数值方法杂志》2017,83(12):940-959
Liquid mixing is an important component of many microfluidic concepts and devices, and computational fluid dynamics (CFD) is playing a key role in their development and optimization. Because liquid mass diffusivities can be quite small, CFD simulation of liquid micromixing can over predict the degree of mixing unless numerical (or false) diffusion is properly controlled. Unfortunately, the false diffusion behavior of higher‐order finite volume schemes, which are often used for such simulations, is not well understood, especially on unstructured meshes. To examine and quantify the amount of false diffusion associated with the often recommended and versatile second‐order upwind method, a series of numerical simulations was conducted using a standardized two‐dimensional test problem on both structured and unstructured meshes. This enabled quantification of an ‘effective’ false diffusion coefficient (Dfalse) for the method as a function of mesh spacing. Based on the results of these simulations, expressions were developed for estimating the spacing required to reduce Dfalse to some desired (low) level. These expressions, together with additional insights from the standardized test problem and findings from other researchers, were then incorporated into a procedure for managing false diffusion when simulating steady, liquid micromixing. To demonstrate its utility, the procedure was applied to simulate flow and mixing within a representative micromixer geometry using both unstructured (triangular) and structured meshes. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
F. Navarrina I. Colominas M. Casteleiro L. Cueto‐Felgueroso H. Gómez J. Fe A. Soage 《国际流体数值方法杂志》2008,56(5):507-523
In this paper, a numerical model for the simulation of the hydrodynamics and of the evolution of the salinity in shallow water estuaries is presented. This tool is intended to predict the possible effects of Civil Engineering public works and other human actions (dredging, building of docks, spillages, etc.) on the marine habitat, and to evaluate their environmental impact in areas with high productivity of fish and of seafood. The prediction of these effects is essential in the decision making about the different options that could be implemented. The mathematical model consists of two coupled systems of differential equations: the shallow water hydrodynamic equations (that describe the evolution of the depth and of the velocity field) and the shallow water advective–diffusive transport equation (that describes the evolution of the salinity level). Some important issues that must be taken into account are the effects of the tides (including that the seabed could be exposed), the volume of fresh water provided by the rivers and the effects of the winds. Thus, different types of boundary conditions are considered. The numerical model proposed for solving this problem is a second‐order Taylor–Galerkin finite element formulation. The proposed approach is applied to a real case: the analysis of the possible effects of dredging Los Lombos del Ulla, a formation of sandbanks in the Arousa Estuary (Galicia, Spain). A number of simulations have been carried out to compare the actual salinity level with the predicted situation if the different dredging options were executed. Some of the obtained results are presented and discussed. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
10.
A stretched version of the QUICKEST scheme for solutions of the advection–dispersion equation is presented. The scheme is accurate for large degrees of stretching, so that it can be used where large gradients are present, e.g. for the calculation of sediment in suspension close to the bed. The scheme is tested for various cases of sediment advection and dispersion in one and two dimensions. © 1998 John Wiley & Sons, Ltd. 相似文献
11.
Ehsan Tavakoli 《国际流体数值方法杂志》2017,84(5):241-267
In this paper, an accurate semi‐implicit rotational projection method is introduced to solve the Navier–Stokes equations for incompressible flow simulations. The accuracy of the fractional step procedure is investigated for the standard finite‐difference method, and the discrete forms are presented with arbitrary orders or accuracy. In contrast to the previous semi‐implicit projection methods, herein, an alternative way is proposed to decouple pressure from the momentum equation by employing the principle form of the pressure Poisson equation. This equation is based on the divergence of the convective terms and incorporates the actual pressure in the simulations. As a result, the accuracy of the method is not affected by the common choice of the pseudo‐pressure in the previous methods. Also, the velocity correction step is redefined, and boundary conditions are introduced accordingly. Several numerical tests are conducted to assess the robustness of the method for second and fourth orders of accuracy. The results are compared with the solutions obtained from a typical high‐resolution fully explicit method and available benchmark reports. Herein, the numerical tests are consisting of simulations for the Taylor–Green vortex, lid‐driven square cavity, and vortex–wall interaction. It is shown that the present method can preserve the order of accuracy for both velocity and pressure fields in second‐order and high‐order simulations. Furthermore, a very good agreement is observed between the results of the present method and benchmark simulations. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
13.
We derive a smoothed particle hydrodynamics (SPH) approximation for anisotropic dispersion that only depends upon the first derivative of the kernel function and study its numerical properties. In addition, we compare the performance of the newly derived SPH approximation versus an implementation of the particle strength exchange (PSE) method and a standard finite volume method for simulating multiple scenarios defined by different combinations of physical and numerical parameters. We show that, for regularly spaced particles, given an adequate selection of numerical parameters such as kernel function and smoothing length, the new SPH approximation is comparable with the PSE method in terms of convergence and accuracy and similar to the finite volume method. On other hand, the performance of both particle methods (SPH and PSE) decreases as the degree of disorder of the particle increases. However, we demonstrate that in these situations the accuracy and convergence properties of both particle methods can be improved by an adequate choice of some numerical parameters such as kernel core size and kernel function. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
We present a new stabilized method for advection–diffusion equations, which combines a control volume FEM formulation of the governing equations with a novel multiscale approximation of the total flux. The latter incorporates information about the exact solution that cannot be represented on the mesh. To define this flux, we solve the governing equations along suitable mesh segments under the assumption that the flux varies linearly along these segments. This procedure yields second‐order accurate fluxes on the edges of the mesh. Then, we use curl‐conforming elements of the same order to lift these edge fluxes into the mesh elements. In so doing, we obtain a stabilized control volume FEM formulation that is second‐order accurate and does not require mesh‐dependent stabilization parameters. Numerical convergence studies on uniform and nonuniform grids along with several standard advection tests illustrate the computational properties of the new method. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. 相似文献
15.
A. P. S. Selvadurai 《Transport in Porous Media》2004,56(1):51-60
This paper presents a proof of the uniqueness theorem for the initial boundary value problem governing advective–diffusive transport of a chemical in a fluid-saturated non-deformable isotropic, homogeneous porous medium. The advective Darcy flow in the porous medium results from the gradient of a hydraulic potential, which is derived from a well-posed problem in potential theory. The paper discusses the relevant set of consistent boundary conditions applicable to the potential inducing the advective flow and to the concentration field, which ensures uniqueness of the solution. 相似文献
16.
M. J. Martinez 《国际流体数值方法杂志》2006,50(3):347-376
The control volume finite element method (CVFEM) was developed to combine the local numerical conservation property of control volume methods with the unstructured grid and generality of finite element methods (FEMs). Most implementations of CVFEM include mass‐lumping and upwinding techniques typical of control volume schemes. In this work we compare, via numerical error analysis, CVFEM and FEM utilizing consistent and lumped mass implementations, and stabilized Petrov–Galerkin streamline upwind schemes in the context of advection–diffusion processes. For this type of problem, we find no apparent advantage to the local numerical conservation aspect of CVFEM as compared to FEM. The stabilized schemes improve accuracy and degree of positivity on coarse grids, and also reduce iteration counts for advection‐dominated problems. Published in 2005 by John Wiley & Sons, Ltd. 相似文献
17.
In the last decade, the characterization of transport in porous media has benefited largely from numerical advances in applied mathematics and from the increasing power of computers. However, the resolution of a transport problem often remains cumbersome, mostly because of the time-dependence of the equations and the numerical stability constraints imposed by their discretization. To avoid these difficulties, another approach is proposed based on the calculation of the temporal moments of a curve of concentration versus time. The transformation into the Laplace domain of the transport equations makes it possible to develop partial derivative equations for the calculation of complete moments or truncated moments between two finite times, and for any point of a bounded domain. The temporal moment equations are stationary equations, independent of time, and with weaker constraints on their stability and diffusion errors compared to the classical advection–dispersion equation, even with simple discrete numerical schemes. Following the complete theoretical development of these equations, they are compared firstly with analytical solutions for simple cases of transport and secondly with a well-performing transport model for advective–dispersive transport in a heterogeneous medium with rate-limited mass transfer between the free water and an immobile phase. Temporal moment equations have a common parametrization with transport equations in terms of their parameters and their spatial distribution on a grid of discretization. Therefore, they can be used to replace the transport equations and thus accelerate the achievement of studies in which a large number of simulations must be carried out, such as the inverse problem conditioned with transport data or for forecasting pollution hazards. 相似文献
18.
This paper is concerned with the solution of heterogeneous problems by the interface control domain decomposition (ICDD) method, a strategy introduced for the solution of partial differential equations in computational domains partitioned into subdomains that overlap. After reformulating the original boundary value problem by introducing new additional control variables, the unknown traces of the solution at internal subdomain interfaces; the latter are determined by requiring that the (a priori) independent solutions in each subdomain undergo the minimization of a suitable cost functional. We provide an abstract formulation for coupled heterogeneous problems and a general theorem of well‐posedness for the associated ICDD problem. Then, we illustrate and validate an efficient algorithm based on the solution of the Schur‐complement system restricted solely to the interface control variables by considering two kinds of heterogeneous boundary value problems: the coupling between pure advection and advection–diffusion equations and the coupling between Stokes and Darcy equations. In the latter case, we also compare the ICDD method with a classical approach based on the Beavers–Joseph–Saffman conditions. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
Vincent Guinot 《国际流体数值方法杂志》2004,44(10):1119-1162
Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony‐preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures may also trigger the instability of oscillatory numerical solutions (e.g. in advection–dispersion phenomena) via the artificial amplification of the shorter modes. The present paper proposes a new approach to carry out the reconstruction. In this approach, the values of the flow variable at the edges of the computational cells are obtained directly from the reconstruction within these cells. This method is applied to the MUSCL and DPM schemes for the solution of the linear advection equation. The modified DPM scheme can capture contact discontinuities within one computational cell, even after millions of time steps at Courant numbers ranging from 1 to values as low as 10‐4. Linear waves are subject to negligible damping. Application of the method to the DPM for one‐dimensional advection–dispersion problems shows that the numerical instability of oscillatory solutions caused by the over compressive, original DPM limiter is eliminated. One‐ and two‐dimensional shallow water simulations show an improvement over classical methods, in particular for two‐dimensional problems with strongly distorted meshes. The quality of the computational solution in the two‐dimensional case remains acceptable even for mesh aspect ratios Δx/Δy as large as 10. The method can be extend to the discretization of higher‐order PDEs, allowing third‐order space derivatives to be discretized using only two cells in space. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
20.
Yuzuru Eguchi 《国际流体数值方法杂志》2002,39(11):1037-1052
In the present paper, the author shows that the predictor/multi‐corrector (PMC) time integration for the advection–diffusion equations induces numerical diffusivity acting only in the streamline direction, even though the equations are spatially discretized by the conventional Galerkin finite element method (GFEM). The transient 2‐D and 3‐D advection problems are solved with the PMC scheme using both the GFEM and the streamline upwind/Petrov Galerkin (SUPG) as the spatial discretization methods for comparison. The solutions of the SUPG‐PMC turned out to be overly diffusive due to the additional PMC streamline diffusion, while the solutions of the GFEM‐PMC were comparatively accurate without significant damping and phase error. A similar tendency was seen also in the quasi‐steady solutions to the incompressible viscous flow problems: 2‐D driven cavity flow and natural convection in a square cavity. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献