首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wittig olefination of (2S,3R,5S,6R)‐5‐(acetyloxy)‐tetrahydro‐6‐[(methoxymethoxy)methyl]‐3‐(phenylthio)‐ 2H‐pyran‐2‐acetaldehyde ((+)‐ 10 ) with {2‐[(2S,3R,4R,5R,6S)‐tetrahydro‐3,4,5‐tris(methoxymethoxy)‐6‐methyl‐ 2H‐pyran‐2‐yl]ethyl}triphenylphosphonium iodide ((?)‐ 11 ) gave a (Z)‐alkene derivative (+)‐ 12 that was converted into (αR,2R,3S,4R,5R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐5‐(phenylthio)‐6‐{(2Z)‐4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]but‐2‐enyl}2H‐pyran‐4‐acetic acid ( 8 ), (αR,2R,3S,4R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐6‐{4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐4‐acetic acid ( 9 ), and simpler analogues without the hydroxyacetic side chain such as (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z)‐4‐[(2S,3R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐3‐(phenylthio)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 30 ), (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{[(2S,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐3,4,5‐ triol ((?)‐ 41 ) and (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z/E))‐4‐[(2R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 43 ). The key intermediates (+)‐ 10 and (?)‐ 11 were derived from isolevoglucosenone and from L ‐fucose, respectively. The following IC50 values were measured in a ELISA test for the affinities of sialyl Lewis x tetrasaccharide, 8, 9, 30 , (?)‐ 41 , and 43 toward P‐selectin: 0.7, 2.5–2.8, 7.3–8.0, 5.3–5.9, 5.0–5.2, and 3.4–4.1 mM , respectively.  相似文献   

2.
A concise, efficient and versatile route from simple starting materials to tricyclic tetrahydro‐1‐benzazepines carrying [a]‐fused heterocyclic units is reported. Thus, the easily accessible methyl 2‐[(2‐allyl‐4‐chlorophenyl)amino]acetate, (I), was converted, via (2RS,4SR)‐7‐chloro‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1‐benzo[b]azepine‐2‐carboxylate, (II), to the key intermediate methyl (2RS,4SR)‐7‐chloro‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (III). Chloroacetylation of (III) provided the two regioisomers methyl (2RS,4SR)‐7‐chloro‐1‐(2‐chloroacetyl)‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (IVa), and methyl (2RS,4SR)‐7‐chloro‐4‐(2‐chloroacetoxy)‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, C14H15Cl2NO4, (IVb), as the major and minor products, respectively, and further reaction of (IVa) with aminoethanol gave the tricyclic target compound (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐3‐(2‐hydroxyethyl)‐2,3,4a,5,6,7‐hexahydrobenzo[f]pyrazino[1,2‐a]azepine‐1,4‐dione, C15H17ClN2O4, (V). Reaction of ester (III) with hydrazine hydrate gave the corresponding carbohydrazide (VI), which, with trimethoxymethane, gave a second tricyclic target product, (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐4a,5,6,7‐tetrahydrobenzo[f][1,2,4]triazino[4,5‐a]azepin‐4(3H)‐one, C12H12ClN3O2, (VII). Full spectroscopic characterization (IR, 1H and 13C NMR, and mass spectrometry) is reported for each of compounds (I)–(III), (IVa), (IVb) and (V)–(VII), along with the molecular and supramolecular structures of (IVb), (V) and (VII). In each of (IVb), (V) and (VII), the azepine ring adopts a chair conformation and the six‐membered heterocyclic rings in (V) and (VII) adopt approximate boat forms. The molecules in (IVb), (V) and (VII) are linked, in each case, into complex hydrogen‐bonded sheets, but these sheets all contain a different range of hydrogen‐bond types: N—H…O, C—H…O, C—H…N and C—H…π(arene) in (IVb), multiple C—H…O hydrogen bonds in (V), and N—H…N, O—H…O, C—H…N, C—H…O and C—H…π(arene) in (VII).  相似文献   

3.
Homochiral Diels-Alder cyclodimerization of (±)-6-ethenyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol ( 1 ) followed by oxidation gives (1RS,4RS,4aSR,4bSR,5RS,8RS,8aRS)-8a-ethenyl-1,3,4,4a,4b,5,6,8,8a,9-decahydro-1,4:5,8-diepoxyphenanthrene-2,7-dione ( 18 ). Selective hydrogenation followed by epoxidation produced (1RS,4RS,4aRS,5aRS,6aRS,7RS,10RS,10aSR,10bRS)-6a-ethyl-1,4,5a,6,6a,7,9,10,10a,10b-decahydro-1,4:7,10-diepoxyphenanthro[8a,9-b]oxirene-3,8-dione ( 21 ), which was solvolyzed (Me3SiOSO2CF3, Piv2O) with concomitant pinacol rearrangement involving an acyl-group migration to give a 6-oxo-7-oxabicyclo[2.2.1]hept-2-yl cation intermediate, which finally generated (1RS,3SR,3aRS,4SR,5aRS,6RS,9RS,9aSR,9bSR)-5a-ethyl-1,4,5,5a,6,7,8,9,9a,9b-decahydro-7,10-dioxo-3H-6,9-epoxy-1,3a-ethanonaphtho[1,2-c]furan-3,4-diyl bis(2,2-dimethylpropanoate) ( 24 ). Photo-reductive 7-oxa bridge opening of 24 , followed by water elimination and silylation, provided (1RS,3SR,3aRS,4SR,5aSR,9aSR,9bSR)-7-{[(tert-butyl)dimethylsilyl]oxy}-5a-ethyl-1,4,5,5a,9a,9b-hexahydro-10-oxo-3H-1,3-ethanonaphtho[1,2-c]furan-3,4-diyl bis(2,2-dimethylpropanoate) ( 34 ). Reduction of 34 with NaBH4 in MeOH followed by desilylation and alcohol protection produced (1RS,3RS,3aRS,4SR,5aSR,9aSR,9bSR)-5a-ethyl-2,3,3a,4,5,5a,6,7,9a,9b-decahydro-1,3-bis(methoxymethoxy)-3a-[(methoxymethoxy)methyl]-7-oxo-1H-benz[e]inden-4-yl 2,2-dimethylpropanoate ( 5 ), a polyoxy-substituted decahydro-1H-benz[e]indene derivative with cis-transoid-trans junction for the two cyclohexane and the cyclopentane rings bearing an angular 3a-(oxymethyl) substituent.  相似文献   

4.
In the molecules of both methyl (1RS,3SR,3aRS,6aSR)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxo‐5‐phenyloctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H24N4O4, (I), and methyl (1RS,3SR,3aRS,6aSR)‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxooctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H23ClN4O4, (II), the two rings of the pyrrolopyrrole fragment are both nonplanar, with conformations close to half‐chair forms. The overall conformations of the molecules of (I) and (II) are very similar, apart from the orientation of the ester function. The molecules of (I) are linked into sheets by a combination of an N—H...π(pyrrole) hydrogen bond and three independent C—H...O hydrogen bonds. The molecules of (II) are also linked into sheets, which are generated by a combination of an N—H...N hydrogen bond and two independent C—H...O hydrogen bonds, weakly augmented by a C—H...π(arene) hydrogen bond.  相似文献   

5.
The Diels-Alder adducts of maleic anhydride to furfuryl esters were reduced into 7-oxabicyclo[2.2.1]hept-5-ene-1,2-exo,3-exo-trimethanol (±)- 15 and enantiomerically pure (−)- 15 (Scheme 1). The tripivalate of (±)- 15 was converted into (1RS,2RS,3RS,4RS,5SR,6SR)-1,5,6-tris(hydroxymethyl)cyclohexane-1,2,3,4-tetrol ((±)- 23 ; Scheme 2). Reaction of BBr3 with the triacetate (±)- 30 of (±)- 15 gave (1RS,2RS,5RS,6RS)-5-bromo-6-hydroxycyclohex-3-ene-1,2,3-trimethyl triacetate ((±)- 31 ) at −78°, and (1RS,2RS,5SR,8SR)-2-endo-hydroxy-6-oxabicylo[3.2.1]oct-3-ene-5,8-dimethyl diacetate ((±)- 32 ) at 0° (Scheme 3). Single-crystal X-ray diffraction of (1RS,2RS,5SR,8SR)-2-acetoxy-6-oxabicyclo[3.2.1]oct-3-ene-5,8-dimethyl diacetate ((±)- 33 ) was carried out. Displacement of bromide (+)- 31 (derived from (−)- 15 ) with azide anion gave (+)- 38 which was transformed into (+)-(1R,2R,5S,6S)-5-amino-6-hydroxycyclohex-3-ene-1,2,3-trimethanol ((+)- 40 ) (Scheme 4). Reaction of (±)- 31 with BBr3 at 0°, followed by azide disubstitution led to (1RS,2RS,5SR,6SR)-5-amino-3-(aminomethyl)-6-hydroxycyclohex-3-ene-1,2-dimethanol ((±)- 45 ). Dihydroxylation of (±)- 38 and further transformations gave (1RS,2RS,3SR,4RS,5SR,6RS)-5-amino-1,4,6-trihydroxycyclohexane-1,2,3-trimethanol ((±)- 49 ) and (1RS,2RS,3SR,4RS,5SR,6RS)-2,3-dihydroxy-7-oxabicyclo[4.1.0]heptane-2,3,4-trimethanol ((±)- 55 ) (Schemes 5 and 6). Expoxidation of the 4-nitrobenzoate (±)- 61 of (±)- 38 allowed the preparation of (1RS,2RS,3SR,4RS,5RS)-5-amino-1,4-dihydroxycyclohexane-1,2,3-trimethanol ((±)- 65 ) and of (1RS,2RS,3SR,4RS,5SR,6RS)-5-amino-4-hydroxy-7-oxabicyclo[4.1.0]heptane-1,2,3-trimethanol ((±)- 67 ) (Scheme 7). The new unprotected polyols and aminopolyols were tested for their inhibitory activity toward commercially available glycohydrolases. At 1 mM concentration, 34, 30, and 31% inhibition of β-galactosidase from bovine liver was observed for (+)- 40 , (±)- 65 , and (±)- 67 , respectively.  相似文献   

6.
Bicycle ring closure on a mixture of (4aS,8aR)‐ and (4aR,8aS)‐ethyl 2‐oxodecahydro‐1,6‐naphthyridine‐6‐carboxylate, followed by conversion of the separated cis and trans isomers to the corresponding thioamide derivatives, gave (4aSR,8aRS)‐ethyl 2‐sulfanylidenedecahydro‐1,6‐naphthyridine‐6‐carboxylate, C11H18N2O2S. Structural analysis of this thioamide revealed a structure with two crystallographically independent conformers per asymmetric unit (Z′ = 2). The reciprocal bicycle ring closure on (3aRS,7aRS)‐ethyl 2‐oxooctahydro‐1H‐pyrrolo[3,2‐c]pyridine‐5‐carboxylate, C10H16N2O3, was also accomplished in good overall yield. Here the five‐membered ring is disordered over two positions, so that both enantiomers are represented in the asymmetric unit. The compounds act as key intermediates towards the synthesis of potential new polycyclic medicinal chemical structures.  相似文献   

7.
The reaction of 1‐(trimethylsilyloxy)cyclopentene ( 9 ) with (±)‐1,3,5‐triisopropyl‐2‐(1‐(RS)‐{[(1E)‐2‐methylpenta‐1,3‐dienyl]oxy}ethyl)benzene ((±)‐ 4a ) in SO2/CH2Cl2 containing (CF3SO2)2NH, followed by treatment with Bu4NF and MeI gave a 3.0 : 1 mixture of (±)‐(2RS)‐2{(1RS,2Z,4SR)‐2‐methyl‐4‐(methylsulfonyl)‐1‐[(RS)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐en‐1‐yl}cyclopentanone ((±)‐ 10 ) and (±)‐(2RS)‐2‐{(1RS,2Z)‐2‐methyl‐4‐[(SR)‐methylsulfonyl]‐1‐[(SR)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐en‐1‐yl}cyclopentanone ((±)‐ 11 ). Similarly, enantiomerically pure dienyl ether (−)‐(1S)‐ 4a reacted with 1‐(trimethylsilyloxy)cyclohexene ( 12 ) to give a 14.1 : 1 mixture of (−)‐(2S)‐2‐{(1S,2Z,4R)‐2‐methyl‐4‐(methylsulfonyl)‐1‐[(S)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐enyl}cyclohexanone ((−)‐ 13a ) and its diastereoisomer 14a with (1S,2R,4R) or (1R,2S,4S) configuration. Structures of (±)‐ 10 , (±)‐ 11 , and (−)‐ 13a were established by single‐crystal X‐ray crystallography. Poor diastereoselectivities were observed with the (E,E)‐2‐methylpenta‐1,3‐diene‐1‐ylethers (+)‐ 4b and (−)‐ 4c bearing ( 1 S )‐1‐phenylethyl and (1S)‐1‐(pentafluorophenyl)ethyl groups instead of the Greene's auxiliary ((1S)‐(2,4,6‐triisopropylphenyl)ethyl group). The results demonstrate that high α/βsyn and asymmetric induction (due to the chiral auxiliary) can be obtained in the four‐component syntheses of the β‐alkoxy ketones. The method generates enantiomerically pure polyfunctional methyl sulfones bearing three chiral centers on C‐atoms and one (Z)‐alkene moiety.  相似文献   

8.
The 2,2′‐methylenebis[furan] ( 1 ) was converted to 1‐{(4R,6S))‐6‐[(2R)‐2,4‐dihydroxybutyl]‐2,2‐dimethyl‐1,3‐dioxan‐4‐yl}‐3‐[(2R,4R)‐tetrahydro‐4,6‐dihydroxy‐2H‐pyran‐2‐yl)propan‐2‐one ((+)‐ 18 ) and its (4S)‐epimer (?)‐ 19 with high stereo‐ and enantioselectivity (Schemes 13). Under acidic methanolysis, (+)‐ 18 yielded a single spiroketal, (3R)‐4‐{(1R,3S,4′R,5R,6′S,7R)‐3′,4′,5′,6′‐tetrahydro‐4′‐hydroxy‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐6′‐yl}butane‐1,3‐diol ((?)‐ 20 ), in which both O‐atoms at the spiro center reside in equatorial positions, this being due to the tricyclic nature of (?)‐ 20 (methyl pyranoside formation). Compound (?)‐ 19 was converted similarly into the (4′S)‐epimeric tricyclic spiroketal (?)‐ 21 that also adopts a similar (3S)‐configuration and conformation. Spiroketals (?)‐ 20 , (?)‐ 21 and analog (?)‐ 23 , i.e., (1R,3S,4′R,5R,6′R)‐3′,4′,5′,6′‐tetrahydro‐6′‐[(2S)‐2‐hydroxybut‐3‐enyl]‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐4′‐ol, derived from (?)‐ 20 , were assayed for their cytotoxicity toward murine P388 lymphocytic leukemia and six human cancer cell lines. Only racemic (±)‐ 21 showed evidence of cancer‐cell‐growth inhibition (P388, ED50: 6.9 μg/ml).  相似文献   

9.
Tetrahydro‐1‐benzazepines have been described as potential antiparasitic drugs for the treatment of chagas disease and leishmaniasis, two of the most important so‐called `forgotten tropical diseases' affecting South and Central America, caused by Trypanosoma cruzi and Leishmania chagasi parasites, respectively. Continuing our extensive work describing the structural characteristics of some related compounds with interesting biological properties, the crystallographic features of three epoxy‐1‐benzazepines, namely (2SR,4RS)‐6,8‐dimethyl‐2‐(naphthalen‐1‐yl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (1), (2SR,4RS)‐6,9‐dimethyl‐2‐(naphthalen‐1‐yl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (2), and (2SR,4RS)‐8,9‐dimethyl‐2‐(naphthalen‐1‐yl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (3), all C22H21NO, and two 1‐benzazepin‐4‐ols, namely 7‐fluoro‐cis‐2‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1‐benzazepin‐4‐ol, C18H18FNO, (4), and 7‐fluoro‐cis‐2‐[(E)‐pent‐1‐enyl]‐2,3,4,5‐tetrahydro‐1H‐1‐benzazepin‐4‐ol, C15H20FNO, (5), are described. Some peculiarities in the crystallization behaviour were found, involving significant variations in the crystalline structures as a result of modest changes in the peripheral substituents in (1)–(3) and the occurrence of discrete disorder due to the molecular overlay of enantiomers with more than one conformation in (5). In particular, an interesting phase change on cooling was observed for compound (5), accompanied by an approximate fourfold increase of the unit‐cell volume and a change of the Z′ value from 1 to 4. This transition is a consequence of the partial ordering of the pentenyl chains in half of the molecules breaking half of the symmetry axes observed in the room‐temperature structure of (5). The structural assembly in all the title compounds is characterized by not only (N,O)—H…(O,N) hydrogen bonds, but also by unconventional C—H…O contacts, resulting in a wide diversity of packing.  相似文献   

10.
(2R,4S)‐2‐(3‐Methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxynaphtho[1,2‐b]azepine, C19H17NOS, (I), crystallizes with a single enantiomer in each crystal, whereas its geometrical isomer (2RS,4SR)‐2‐(5‐methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐naphtho[1,2‐b]azepine, (II), and (2RS,4SR)‐2‐(5‐bromothiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxynaphtho[1,2‐b]azepine, C18H14BrNOS, (III), both crystallize as racemic mixtures. A combination of one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds links the molecules of (I) into a three‐dimensional framework; the molecules of (II) are linked into a C(4)C(4)[R22(7)] chain of rings by a combination of C—H...N and C—H...O hydrogen bonds; and in (III), where Z′ = 2, a combination of four C—H...π(arene) hydrogen bonds and two C—H...π(thienyl) hydrogen bonds links the molecules into complex sheets. Comparisons are made with the assembly patterns in some aryl‐substituted 1,4‐epoxynaphtho[1,2‐b]azepines.  相似文献   

11.
(2SR,4RS)‐2‐exo‐Phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H15NO, (I), (2SR,4RS)‐2‐exo‐(4‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (II), and (2SR,4RS)‐2‐exo‐(3‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C17H17NO, (III), all crystallize with Z′ = 2, in the space groups Cc, P21/n and P21/c, respectively. In each of (II) and (III), the conformations of the two independent molecules are significantly different. The molecules in (I) are linked by C—H...π(arene) hydrogen bonds to form two independent chains, each containing only one type of molecule. The molecules in (II) are linked into sheets by a combination of C—H...O, C—H...(N,O) and C—H...π(arene) hydrogen bonds, all of which link pairs of molecules related by inversion, while in (III), the molecules are linked into sheets by a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds. There are no direction‐specific intermolecular interactions of any kind in the structure of (2SR,4RS)‐7‐bromo‐2‐exo‐phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14BrNO, (IV), but in the structure of (2SR,4RS)‐2‐exo‐(4‐bromophenyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13BrClNO, (V), a combination of one C—H...N hydrogen bond and one C—H...O hydrogen bond links the molecules into sheets of alternating centrosymmetric R22(14) and R66(22) rings. Comparisons are made with the structures of a number of related compounds.  相似文献   

12.
In (2RS,4SR)‐7‐chloro‐2‐exo‐(2‐chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H12Cl2FNO, (I), molecules are linked into chains by a single C—H...π(arene) hydrogen bond. (2RS,4SR)‐2‐exo‐(2‐Chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13ClFNO, (II), is isomorphous with compound (I) but not strictly isostructural with it, as the hydrogen‐bonded chains in (II) are linked into sheets by an aromatic π–π stacking interaction. The molecules of (2RS,4SR)‐7‐methyl‐2‐exo‐(4‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H19NO, (III), are linked into sheets by a combination of C—H...N and C—H...π(arene) hydrogen bonds. (2S,4R)‐2‐exo‐(2‐Chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (IV), crystallizes as a single enantiomer and the molecules are linked into a three‐dimensional framework structure by a combination of one C—H...O hydrogen bond and three C—H...π(arene) hydrogen bonds.  相似文献   

13.
Three highly‐substituted cyclohexanol derivatives have been prepared from 2‐acetylpyridine and 4‐halogenobenzaldehydes under mild conditions. (1RS,2SR,3SR,4RS,5RS)‐3,5‐Bis(4‐fluorophenyl)‐2,4‐bis(pyridine‐2‐carbonyl)‐1‐(pyridin‐2‐yl)cyclohexanol, C35H27F2N3O3, (I), (1RS,2SR,3SR,4RS,5RS)‐3,5‐bis(4‐chlorophenyl)‐2,4‐bis(pyridine‐2‐carbonyl)‐1‐(pyridin‐2‐yl)cyclohexanol acetone 0.951‐solvate, C35H27Cl2N3O3·0.951C3H6O, (II), and (1RS,2SR,3SR,4RS,5RS)‐3,5‐bis(4‐bromophenyl)‐2,4‐bis(pyridine‐2‐carbonyl)‐1‐(pyridin‐2‐yl)cyclohexanol, C35H27Br2N3O3, (III), all crystallize in different space groups, viz. Pbca, Fdd2 and P, respectively. In compound (II), the acetone molecule is disordered over two sets of atomic sites having occupancies of 0.690 (13) and 0.261 (13). Each of the cyclohexanol molecules contains an intramolecular O—H...N hydrogen bond and their overall molecular conformations are fairly similar. The molecules of (I) are linked by two independent C—H...O hydrogen bonds to form a C(5)C(10)[R22(15)] chain of rings, and those of (III) are linked by a combination of C—H...O and C—H...N hydrogen bonds, forming a chain of alternating R22(16) and R22(18) rings. The cyclohexanol molecules in (II) are linked by a single C—H...N hydrogen bond to form simple C(4) chains and these chains are linked by a π–π stacking interaction to form sheets, to which the disordered acetone molecules are weakly linked via a number of C—H...O contacts.  相似文献   

14.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

15.
The molecules of (2RS,4SR)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H11BrClNOS, (I), are linked into cyclic centrosymmetric dimers by C—H...π(thienyl) hydrogen bonds. Each such dimer makes rather short Br...Br contacts with two other dimers. In (2RS,4SR)‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H15NOS, (II), a combination of C—H...O and C—H...π(thienyl) hydrogen bonds links the molecules into chains of rings. A more complex chain of rings is formed in (2RS,4SR)‐7‐chloro‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H14ClNOS, (III), built from a combination of two independent C—H...O hydrogen bonds, one C—H...π(arene) hydrogen bond and one C—H...π(thienyl) hydrogen bond.  相似文献   

16.
The Diels-Alder adduct (±)- 3 of 2,4-dimethylfuran and 1-cyanovinyl acetate was converted stereoselectively into benzyl 6-(4-chlorophenylsulfonyl)-1,3-exo,5-trimethyl-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl ( 26 ) and -2-endo-yl ether ( 36 ). Addition of LiAlH4 to the latter led to the 3-O-benzyl derivatives 28 and 37 of (1RS,2SR,3SR,6SR)- and (1RS,2SR,3RS,6SR)-5-(4-chlorophenylsulfonyl)-2,4,6-trimethylcyclohex-4-ene-1,3-diol, respectively. Methylenation of 6-exo-(4-chlorophenylthio)-1-methyl-5-methylidene-7-oxabicyclo[2.2.1]heptan-2-one ( 16 ), obtained by reaction of (±)- 3 with 4-Cl-C6H4SCl and saponification gave, 6-exo-(4-chlorophenylthio)-1-methyl-3,5-dimethylidene-7-oxabicyclo [2.2.1]heptan-2-one ( 43 ), the reduction of which with K-Selectride afforded 6-exo-(4-chlorophenylthio)-1,3-endo-dimethyl-5-methylidene-7-oxabicyclo[2.2.1]heptan-2-endo-ol ( 44 ). The 3-O-benzyl derivative 48 of (1RS,2RS,3RS,6SR)-5-(4-chlorophenylsulfonyl)- 2,4,6-trimethylcyclohex-4-ene-1,3-diol was derived from 44 via based-induced oxa-ring opening of benzyl 6-endo-(4-chlorophenylsulfonyl)-1,3-endo-5-endo-trimethyl-7-oxabicyclo[2.2.1]hept-2-endo-yl ether ( 49 ). Benzylation of 28 , followed by reductive desulfonylation and oxidative cleavage of the cyclohexene moiety afforded (2RS,3SR,4RS,5RS)-3,5-bis(benzyloxy)-2,4-dimethyl-6-oxoheptanal ( 32 ).  相似文献   

17.
Four compounds are reported, all of which lie along a versatile reaction pathway which leads from simple carbonyl compounds to terphenyls. (2E)‐1‐(2,4‐Dichlorophenyl)‐3‐ [4‐(prop‐1‐en‐2‐yl)phenyl]prop‐2‐en‐1‐one, C18H14Cl2O, (I), prepared from 4‐(prop‐1‐en‐2‐yl)benzaldehyde and 2,4‐dichloroacetophenone, exhibits disorder over two sets of atomic sites having occupancies of 0.664 (6) and 0.336 (6). The related chalcone (2E)‐3‐(4‐chlorophenyl)‐1‐(4‐fluorophenyl)prop‐2‐en‐1‐one reacts with acetone to produce (5RS)‐3‐(4‐chlorophenyl)‐5‐[4‐(propan‐2‐yl)phenyl]cyclohex‐2‐en‐1‐one, C21H21ClO, (II), which exhibits enantiomeric disorder with occupancies at the reference site of 0.662 (4) and 0.338 (4) for the (5R) and (5S) forms; the same chalcone reacts with methyl 3‐oxobutanoate to give methyl (1RS,6SR)‐4‐(4‐chlorophenyl)‐6‐[4‐(propan‐2‐yl)phenyl]‐2‐oxocyclohex‐3‐ene‐1‐carboxylate, C23H23ClO3, (III), where the reference site contains both (1R,6S) and (1S,6R) forms with occupancies of 0.923 (3) and 0.077 (3), respectively. Oxidation, using 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone, of ethyl (1RS,6SR)‐6‐(4‐bromophenyl)‐4‐(4‐fluorophenyl)‐2‐oxocyclohex‐3‐ene‐1‐carboxylate, prepared in a similar manner to (II) and (III), produces ethyl 4′′‐bromo‐4‐fluoro‐5′‐hydroxy‐1,1′:3′,1′′‐terphenyl‐4′‐carboxylate, C21H16BrFO3, (IV), which crystallizes with Z′ = 2 in the space group P. There are no significant intermolecular interactions in the structures of compounds (I) and (II), but for the major disorder component of compound (III), the molecules are linked into sheets by a combination of C—H...O and C—H...π(arene) hydrogen bonds. The two independent molecules of compound (IV) form two different centrosymmetric dimers, one built from inversion‐related pairs of C—H...O hydrogen bonds and the other from inversion‐related pairs of C—H...π(arene) hydrogen bonds. Comparisons are made with related compounds.  相似文献   

18.
(1RS,2SR,3RS,4SR,5RS)‐2,4‐Dibenzoyl‐1,3,5‐triphenylcyclohexan‐1‐ol or (4‐hydroxy‐2,4,6‐triphenylcyclohexane‐1,3‐diyl)bis(phenylmethanone), C38H32O3, (1), is formed as a by‐product in the NaOH‐catalyzed synthesis of 1,3,5‐triphenylpentane‐1,5‐dione from acetophenone and benzaldehyde. Single crystals of the chloroform hemisolvate, C38H32O3·0.5CHCl3, were grown from chloroform. The structure has triclinic (P) symmetry. One diastereomer [as a pair of (1RS,2SR,3RS,4SR,5RS)‐enantiomers] of (1) has been found in the crystal structure and confirmed by NMR studies. The dichoromethane hemisolvate has been reported previously [Zhang et al. (2007). Acta Cryst. E 63 , o4652]. (1RS,2SR,3RS,4SR,5RS)‐2,4‐Dibenzoyl‐3,5‐bis(2‐methoxyphenyl)‐1‐phenylcyclohexan‐1‐ol or [4‐hydroxy‐2,6‐bis(2‐methoxyphenyl)‐4‐phenylcyclohexane‐1,3‐diyl]bis(phenylmethanone), C40H36O5, (2), is also formed as a by‐product, under the same conditions, from acetophenone and 2‐methoxybenzaldehyde. Crystals of (2) have been grown from chloroform. The structure has orthorhombic (Pca21) symmetry. A diastereomer of (2) possesses the same configuration as (1). In both structures, the cyclohexane ring adopts a chair conformation with all bulky groups (benzoyl, phenyl and 2‐methoxyphenyl) in equatorial positions. The molecules of (1) and (2) both display one intramolecular O—H...O hydrogen bond.  相似文献   

19.
The Friedel-Crafts monoacylation of trans-η-[(1RS,2RS,4SR,5SR,6RS,7SR,8SR)-C,5,6,C-η:C,7,8,C-η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 5 ) is highly stereoselective and yields trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,6-η,oxo-σ:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 8 ) which equilibrates with the trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,5,6,C-η:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 9 ) on heating. Optically pure (–)- 9 has been prepared from the corresponding optically pure alcohol (+)- 4 . The structure and absolute configuration of (–)- 9 was established by single-crystal X-ray diffraction.  相似文献   

20.
(1RS,3RS,4RS,10SR)‐2,2,3,10‐Tetrabromo‐1,2,3,4‐tetrahydro‐1,4‐ethanonaphthalene, C12H10Br4, (I), is the first structure to be reported with four Br atoms bound to a 1,4‐ethanonaphthalene framework and also the first which possesses three Br atoms in exo positions. Interactions between the Br atoms [three short intramolecular Br...Br distances of 3.1094 (4), 3.2669 (4) and 3.4415 (5) Å] have little effect on the C—C bond lengths but lead to significant twisting of the cage structure compared with the parent hydrocarbon, which is expected to be fully eclipsed at the two saturated C2H4 bridge positions. Chemically related (1SR,4RS)‐2,3‐dibromo‐1,4‐ethenonaphthalene, C12H8Br2, (II), obtained by double dehydrobromination of (I), represents the first structure of any halogen‐substituted benzobarrelene. This cis‐dibromide shows little evidence of steric congestion at the double bond [Br...Br = 3.5276 (8) Å] as a consequence of the large C—C—Br angles [average C=C—Br angle = 126.15 (10)°].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号