首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New convenient one‐pot method for reduction of hetarenediazonim tetrafluoroborates to the hetarylhydrazine derivatives was developed. Interaction of 8‐carboxyethyl‐3‐(tert‐butyl)‐4‐oxo‐4,6‐dihydropyrazolo[5,1‐c ][1,2,4]triazine‐7‐diazonium tetrafluoroborate with anhydrous SnCl2 in anhydrous CF3CO2H, and further sequence of one‐pot operations led to formation of various derivatives of the unstable ethyl 3‐(tert‐butyl)‐7‐hydrazinyl‐4‐oxo‐4,6‐dihydropyrazolo[5,1‐c ][1,2,4]triazine‐8‐carboxylate (hydrochloride, hydrazides, hydrazones, and pyrazoles), which were isolated in high yields. The anhydrous conditions were first used with SnCl2 and allowed to exclude hydrolysis of the ester group and formation of the by‐products.  相似文献   

2.
The two‐electron reduction of a diprotonated dodecaphenylporphyrin derivative by Na2S2O4 gave a corresponding isophlorin ( Iph ) selectively. Formation of Iph was confirmed by spectroscopic measurements and the isolation of tetramethylated Iph . Further reduction of Iph proceeded to form an unprecedented four‐electron‐reduced porphyrin ( IphH2 ), which was fully characterized by spectroscopic and X‐ray crystallographic analysis. IphH2 , with a unique conformation, could be oxidized to reproduce the starting porphyrin, resulting in a proton‐coupled four‐electron reversible redox system.  相似文献   

3.
This paper presents a polarographic (dc and differential pulse (DP)) study of the reduction of the s-triazine derivative propazine (4-chloro-2,6-diisopropylamino-s-triazine). The study is performed in acidic media (from solutions 2.25 M in H2SO4 to pH 5) because no signals were obtained above pH 5 (even at pH values of 11–12). In the pH range 2–4 the polarograms decreased until they vanished. In DP polarography, two main reduction peaks were observed, accompanied by a pre-peak at less negative potentials, and a post-peak at more negative potentials, due to the adsorption of propazine on the electrode. The main peaks corresponded to two-electron reduction processes. At pH below the protonation pK of the triazine ring (about 1.7), the results showed that, in a first stage, propazine suffers a cleavage of the Cl atom via a CEC process (electron transfer placed between two chemical reactions) to yield a dechlorinated intermediate, which is reduced through an irreversible two-electron process, the rate-determining step (r.d.s.) being the second electron transfer. At pH above the pK, a protonation of the triazine ring precedes the reduction process, this reaction being also responsible for the observed decrease in limiting current.  相似文献   

4.
The title salt, C18H22N5+·Cl?, is a member of a new series of lipophilic 4,6‐di­amino spiro‐s‐triazines which are potent in­hib­itors of di­hydro­folate reductase. The protonated triazine ring deviates from planarity, whereas the cyclo­hexane ring adopts a chair conformation. A rather unusual hydrogen‐bonding scheme exists in the crystal. There is a centrosymmetric arrangement involving two amino groups and two triazine ring N atoms, with graph‐set R(8) and an N?N distance of 3.098 (3) Å, flanked by two additional R(8) systems, involving two amino groups, a triazine ring N atom and a Cl? anion, with N?Cl distances in the range 3.179 (2)–3.278 (2) Å. Furthermore, the Cl? anion, the protonated triazine ring N atom and an amino group form a hydrogen‐bonding system with graph‐set R(6).  相似文献   

5.
《Electroanalysis》2006,18(4):417-422
In dimethylformamide containing tetramethylammonium tetrafluoroborate, cyclic voltammograms for reduction of 4,4′‐(2,2,2‐trichloroethane‐1,1‐diyl)bis(chlorobenzene) (DDT) at a glassy carbon cathode exhibit five waves, whereas three waves are observed for the reduction of 4,4′‐(2,2‐dichloroethane‐1,1‐diyl)bis(chlorobenzene) (DDD). Bulk electrolyses of DDT and DDD afford 4,4′‐(ethene‐1,1‐diyl)bis(chlorobenzene) (DDNU) as principal product (67–94%), together with 4,4′‐(2‐chloroethene‐1,1‐diyl)bis(chlorobenzene) (DDMU), 1‐chloro‐4‐styrylbenzene, and traces of both 1,1‐diphenylethane and 4,4′‐(ethane‐1,1‐diyl)bis(chlorobenzene) (DDO). For electrolyses of DDT and DDD, the coulometric n values are essentially 4 and 2, respectively. When DDT is reduced in the presence of a large excess of D2O, the resulting DDNU and DDMU are almost fully deuterated, indicating that reductive cleavage of the carbon–chlorine bonds of DDT is a two‐electron process that involves carbanion intermediates. A mechanistic scheme is proposed to account for the formation of the various products.  相似文献   

6.
The molecular dimensions of 2‐ethylsulfanyl‐7‐(4‐methylphenyl)‐4‐phenylpyrazolo[1,5‐a][1,3,5]triazine, C20H18N4S, (I), 7‐(4‐chlorophenyl)‐2‐ethylsulfanyl‐4‐phenylpyrazolo[1,5‐a][1,3,5]triazine, C19H15ClN4S, (II), and 4,7‐bis(4‐chlorophenyl)‐2‐(ethylsulfanyl)pyrazolo[1,5‐a][1,3,5]triazine, C19H14Cl2N4S, (III), show evidence for some aromatic delocalization in the pyrazole rings. The conformations adopted by the ethylsulfanyl substituents are different in all three compounds. There are no hydrogen bonds in any of the crystal structures, but pairs of molecules in (II) and (III) are linked into centrosymmetric dimers by π‐stacking interactions.  相似文献   

7.
The present work describes reduction of iodate (IO3?), and periodate (IO4?) at silicomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐SiMo) film coated glassy carbon electrode in 0.1 M H2SO4. In our previous study, we were able to prepare the PLL‐GA‐SiMo film modified electrode by means of electrostatically trapping SiMo12O404? mediator in the cationic film of PLL‐GA, and the voltammetric investigation in pure supporting indicated that the charge transport through the film was fast. Here, the electrocatalytic activity of PLL‐GA‐SiMo film electrode towards iodate and periodate was tested and subsequently used for analytical determination of these analytes by amperometry. The two electron reduced species of SiMo12O404? anion was responsible for the electrocatalytic reduction of IO3? at PLL‐GA‐SiMo film electrode while two and six electron reduced species were showed electrocatalytic activity towards IO4? reduction. Under optimized experimental conditions of amperometry, the linear concentration range and sensitivity are 2.5×10?6 to 1.1×10?2 M and 18.47 μA mM?1 for iodate, and 5×10?6 to 1.43×10?4 M and 1014.7 μA mM?1 for periodate, respectively.  相似文献   

8.
The title compound, C9H8FN5·C3H7NO, contains two independent complexes in the asymmetric unit, each consisting of one 3,5‐di­amino‐6‐(2‐fluoro­phenyl)‐1,2,4‐triazine mol­ecule and one di­methyl­form­amide solvent mol­ecule. One triazine mol­ecule is disordered over two conformations within the crystal, the occupancies being 62 (1) and 38 (1)%. The phenyl ring of this mol­ecule resolves into two conformations rotated by almost 180° about the bridging bond between the two rings, while the triazine rings approximately superimpose on each other. The triazine mol­ecules of the asymmetric unit differ in the dihedral angles between their respective phenyl and triazine ring planes, these being 57.6 (2)° for the fully occupied, and 76.9 (6) and 106.8 (8)° for the partially occupied mol­ecules. An extensive network of hydrogen bonds maintains the crystal structure.  相似文献   

9.
The thermal reaction of the endohedral metallofullerene La2@D2(10611)‐C72, which contains two pentalene units at opposite ends of the cage, with 5,6‐diphenyl‐3‐(2‐pyridyl)‐1,2,4‐triazine proceeded selectively to afford only two bisfulleroid isomers. The molecular structure of one isomer was determined using single‐crystal X‐ray crystallography. The results suggest that the [4+2] cycloaddition was initiated in a highly regioselective manner at the C? C bond connecting two pentagon rings of C72. Subsequent intramolecular electrocyclization followed by cycloreversion resulted in the formation of an open‐cage derivative having three seven‐membered ring orifices on the cage and a significantly elongated cage geometry. The reduction potentials of the open‐cage derivatives were similar to those of La2@D2‐C72 whereas the oxidation potentials were shifted more negative than those of La2@D2‐C72. These results point out that further oxidation could occur easily in the derivatives.  相似文献   

10.
The title compound, [Ag(C3H6N6)2]NO3, has an alternating two‐dimensional bilayer structure supported by extensive hydrogen bonds. The [Ag(melamine)2]+ cationic monomers (melamine is 1,3,5‐triazine‐2,4,6‐triamine) are connected via N—H...N hydrogen bonds to form two‐dimensional sheets. Nitrate groups are sandwiched between two sheets through N—H...O hydrogen bonds. An almost perfectly linear coordination geometry is found for the AgI ions. The triazine ligands are slightly distorted due to π–π interactions.  相似文献   

11.
The reduction of 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine (TPT) with alkali metals resulted in four radical anion salts ( 1 , 2 , 4 and 5 ) and one diradical dianion salt ( 3 ). Single‐crystal X‐ray diffraction and electron paramagnetic resonance (EPR) spectroscopy reveal that 1 contains the monoradical anion TPT.? stacked in one‐dimensional (1D) with K+(18c6) and 2 can be viewed as a 1D magnetic chain of TPT.?, while 4 and 5 form radical metal‐organic frameworks (RMOFs). 1D pore passages, with a diameter of 6.0 Å, containing solvent molecules were observed in 5 . Variable‐temperature EPR measurements show that 3 has an open‐shell singlet ground state that can be excited to a triplet state, consistent with theoretical calculation. The work suggests that the direct reduction approach could lead to the formation of RMOFs.  相似文献   

12.
2,4,6‐Tris(pyridin‐4‐yl)‐1,3,5‐triazine (tpt), as an organic molecule with an electron‐deficient nature, has attracted considerable interest because of its photoinduced electron transfer from neutral organic molecules to form stable anionic radicals. This makes it an excellent candidate as an organic linker in the construction of photochromic complexes. Such a photochromic three‐dimensional (3D) metal–organic framework (MOF) has been prepared using this ligand. Crystallization of tpt with Cd(NO3)2·4H2O in an N,N‐dimethylacetamide–methanol mixed‐solvent system under solvothermal conditions afforded the 3D MOF poly[[bis(nitrato‐κ2O,O′)cadmium(II)]‐μ3‐2,4,6‐tris(pyridin‐4‐yl)‐1,3,5‐triazine‐κ3N2:N4:N6], [Cd(NO3)2(C18H12N6)]n, which was characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the asymmetric unit contains one independent CdII cation, one tpt ligand and two coordinated NO3? anions. The CdII cations are connected by tpt ligands to generate a 3D framework. The single framework leaves voids that are filled by mutual interpenetration of three independent equivalent frameworks in a fourfold interpenetrating architecture. The compound shows a good thermal stability and exhibits a reversible photochromic behaviour, which may originate from the photoinduced electron‐transfer generation of radicals in the tpt ligand.  相似文献   

13.
In the crystal structure of 3‐amino‐1,2,4‐triazine, C3H4N4, the mol­ecules form hydrogen‐bonded chains that are almost parallel to the b axis (3.2°), and which are inclined to the a and c axes by ~21 and ~69°, respectively. The distortion of the 1,2,4‐triazine ring in the crystal is compared with gas‐phase ab initio molecular‐orbital calculations.  相似文献   

14.
《Electroanalysis》2003,15(19):1555-1560
Cyclic voltammetry was used to investigate the oxidation of 8‐oxo‐2′‐deoxyguanosine (8‐oxo‐dG) on the glassy carbon (GC), platinum, gold and SnO2 electrodes over a range of the sweep rate, 8‐oxo‐dG concentration and the solution pH. Reaction mechanism that is common to all these electrodes involves the two‐electron two‐proton charge transfer step followed by the irreversible chemical reaction(s). Rate of the charge transfer reaction decreases with the increasing solution pH (GC, Pt, Au), and depends on the nature of the electrode material following the sequence GC>Pt, Au>>SnO2. These effects can be related to the degree of oxidation of the electrode surface (Pt, Au, SnO2), or to the density of the active surface sites (GC). Any of these electrodes can be used for the fabrication of an amperometric detector for 8‐oxo‐dG .  相似文献   

15.
The title compound, [Cd2(SO3)2(C18H12N6)2]·8H2O, is a dimer built up around a symmetry center, where the sulfite anion displays a so far unreported coordination mode in metal‐organic complexes; the anion binds as a μ2‐sulfite‐κ4O,O′:O′,O′′ ligand to two symmetry‐related seven‐coordinate CdII cations, binding through its three O atoms by way of two chelate bites with an O atom in common, which acts as a bridge. The cation coordination is completed by a 2,4,6‐tri‐2‐pyridyl‐1,3,5‐triazine ligand acting in its usual tridentate mode.  相似文献   

16.
The structures of cocrystals of 2,6‐dichlorophenol with 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, C6H4Cl2O·C4H7N5, (III), and 2,6‐dichloroaniline with 2,6‐diaminopyrimidin‐4(3H)‐one and N,N‐dimethylacetamide, C6H5Cl2N·C4H6N4O·C4H9NO, (V), plus three new pseudopolymorphs of their coformers, namely 2,4‐diamino‐6‐methyl‐1,3,5‐triazine–N,N‐dimethylacetamide (1/1), C4H7N5·C4H9NO, (I), 2,4‐diamino‐6‐methyl‐1,3,5‐triazine–N‐methylpyrrolidin‐2‐one (1/1), C4H7N5·C5H9NO, (II), and 6‐aminoisocytosine–N‐methylpyrrolidin‐2‐one (1/1), C4H6N4O·C5H9NO, (IV), are reported. Both 2,6‐dichlorophenol and 2,6‐dichloroaniline are capable of forming definite synthon motifs, which usually lead to either two‐ or three‐dimensional crystal‐packing arrangements. Thus, the two isomorphous pseudopolymorphs of 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, i.e. (I) and (II), form a three‐dimensional network, while the N‐methylpyrrolidin‐2‐one solvate of 6‐aminoisocytosine, i.e. (IV), displays two‐dimensional layers. On the basis of these results, attempts to cocrystallize 2,6‐dichlorophenol with 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, (III), and 2,6‐dichloroaniline with 6‐aminoisocytosine, (V), yielded two‐dimensional networks, whereby in cocrystal (III) the overall structure is a consequence of the interaction between the two compounds. By comparison, cocrystal–solvate (V) is mainly built by 6‐aminoisocytosine forming layers, with 2,6‐dichloroaniline and the solvent molecules arranged between the layers.  相似文献   

17.
In nature, [FeFe]‐hydrogenases catalyze the uptake and release of molecular hydrogen (H2) at a unique iron‐sulfur cofactor. The absence of an electrochemical overpotential in the H2 release reaction makes [FeFe]‐hydrogenases a prime example of efficient biocatalysis. However, the molecular details of hydrogen turnover are not yet fully understood. Herein, we characterize the initial one‐electron reduction of [FeFe]‐hydrogenases by infrared spectroscopy and electrochemistry and present evidence for proton‐coupled electron transport during the formation of the reduced state Hred′. Charge compensation stabilizes the excess electron at the [4Fe‐4S] cluster and maintains a conservative configuration of the diiron site. The role of Hred′ in hydrogen turnover and possible implications on the catalytic mechanism are discussed. We propose that regulation of the electronic properties in the periphery of metal cofactors is key to orchestrating multielectron processes.  相似文献   

18.
Electrochemical processes in mesoporous TiO2‐Nafion thin films deposited on indium tin oxide (ITO) electrodes are inherently complex and affected by capacitance, Ohmic iR‐drop, RC‐time constant phenomena, and by potential and pH‐dependent conductivity. In this study, large‐amplitude sinusoidally modulated voltammetry (LASMV) is employed to provide access to almost purely Faradaic‐based current data from second harmonic components, as well as capacitance and potential domain information from the fundamental harmonic for mesoporous TiO2‐Nafion film electrodes. The LASMV response has been investigated with and without an immobilized one‐electron redox system, ferrocenylmethyltrimethylammonium+. Results clearly demonstrate that the electron transfer associated with the immobilized ferrocene derivative follows two independent pathways i) electron hopping within the Nafion network and ii) conduction through the TiO2 backbone. The pH effect on the voltammetric response for the TiO2 reduction pathway (ii) can be clearly identified in the 2nd harmonic LASMV response with the diffusion controlled ferrocene response (i) acting as a pH independent reference. Application of second harmonic data derived from LASMV measurement, because of the minimal contribution from capacitance currents, may lead to reference‐free pH sensing with systems like that found for ferrocene derivatives.  相似文献   

19.
Syntheses, and electrochemical properties of two novel complexes, [Cu(phendio)(L ‐Phe)(H2O)](ClO4) ·H2O (1) and [Ni(phendio)(Gly)(H2O)](ClO4)·H2O (2) (where phendio = 1,10‐phenanthroline‐5,6‐dione, L ‐Phe = L ‐phenylalanine, Gly = glycine), are reported. Single‐crystal X‐ray diffraction results of (1) suggest that this complex structure belongs to the orthorhombic crystal system. The electrochemical properties of free phendio and these complexes in phosphate buffer solutions in a pH range between 2 and 9 have been investigated using cyclic voltammetry. The redox potential of these compounds is strongly dependent on the proton concentration in the range of ? 0.3–0.4 V vs SCE (saturated calomel reference electrode). Phendiol reacts by the reduction of the quinone species to the semiquinone anion followed by reduction to the fully reduced dianion. At pH lower than 4 and higher than 4, reduction of phendio proceeds via 2e?/3H+ and 2e?/2H+ processes. For complexes (1) and (2), being modulated by the coordinated amino acid, the reduction of the phendio ligand proceeds via 2e?/2H+ and 2e?/H+ processes, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The electrochemical behavior of Na‐salt of 2‐methyl‐3‐(4‐nitrophenyl)acrylate (NPA) and its reduction product was studied by cyclic (CV), differential pulse(DPV) and square wave voltammetry (SWV) using a glassy carbon electrode (GCE). The results revealed that NPA is irreversibly reduced leading to the formation of a reduction product (PNPA). For pH<9.0 the peak potential was linearly dependent on pH. For pH>9.0 the peak potential was pH‐independent and the value of pKb≈9.0 was determined. The adsorbed PNPA exhibited reversible redox reaction. The reduction of PNPA was pH dependent. To ensure that the electrochemical behavior of NPA is due to the reducible moiety, NO2, closely related compounds to NPA were also studied, and a redox mechanism was proposed for NPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号