首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starting from (Z)‐bis(N,N‐diisopropylanilino)‐substituted tetraethynylethene (TEE), perethynylated octadehydro[12]‐ and dodecadehydro[18]annulenes were prepared by oxidative Hay coupling. The dodecadehydro[18]annulene with six peripheral N,N‐diisopropylanilino substituents was characterized by X‐ray crystallography. Elongation of the Z‐bisdeprotected TEE by Cadiot–Chodkiewicz coupling with 1‐bromo‐2‐(triisopropylsilyl)ethyne provided a Z‐configured bis(butadiyne), which after alkyne deprotection afforded under Hay coupling conditions N,N‐diisopropylanilino‐substituted perethynylated hexadecadehydro[20]‐ and tetracosadehydro[30]an‐nulenes. The diisopropylanilino substituents enhance the properties of these unprecedented all‐carbon perimeters in several distinct ways. They ensure their solubility, increase their stability, and importantly, engage in strong intramolecular charge‐transfer interactions with the electron‐accepting all‐carbon cores, resulting in intense, bathochromically shifted charge‐transfer bands in the UV/Vis spectra. The charge‐transfer character of these bands was confirmed by protonation‐neutralization experiments. The redox properties of the new carbon‐rich chromophores were investigated by cyclic voltammetry and rotating disk voltammetry, which indicated different redox behavior for aromatic (4n+2 π electrons) and antiaromatic (4n π electrons) dehydroannulenes.  相似文献   

2.
A series of 1-naphthanilides (1) and 2-naphthanilides (2) with varied substituents at the para- or meta-position of anilino phenyl ring were prepared and their absorption and fluorescence spectra in a nonpolar solvent cyclohexane were investigated. An abnormal long wavelength emission assigned to the charge transfer (CT) state was found for all of the prepared naphthanilides in cyclohexane. A linear free energy correlation between the CT emission energies and the Hammett constants of the substituent was found within series 1 and 2. The value of the linear slope with 1 (0.42 eV) was higher than that with 2 (0.32 eV) being close to that of the substituted benzanilides 3 (0.31 eV) The higher slope value suggested higher charge separation extent in the CT state of 1 than that of 2. It was found that the corresponding linear slope of anilino-substituted benzanilides remained unchanged when para-, meta-, ortho-, or ortho, ortho-methyls were introduced into the anilino moiety, which ruled out the possible contribution of the difference in the steric effect and the electron accepting ability of the naphthoyl acceptor in 1 and 2. Compared with the early reported N-substituted-benzoyl-aminonaphthalene derivatives 4 and 5, it was considered that 1-naphthoyl enhanced the charge transfer in 1 and the proximity of its ^1La and ^1Lb states was suggested to be responsible. It was shown that 1- and/or 2-substituted naphthalene cores acting as either electron acceptor (naphthoyl) or electron donor (aminonaphthalene) were different in not only electron accepting (donating) ability but also shaping the charge transfer pathway.  相似文献   

3.
A cycloaddition–retroelectrocyclization reaction between tetracyanoethylene and two zinc phthalocyanines (ZnIIPcs) bearing one or four anilino‐substituted alkynes has been used to install a strong, electron‐accepting tetracyanobuta‐1,3‐diene (TCBD) between the electron‐rich ZnIIPc and aniline moieties. A combination of photophysical, electrochemical, and spectroelectrochemical investigations with the ZnIIPc‐TCBD‐aniline conjugates, which present panchromatic absorptions in the visible region extending all the way to the near infrared, show that the formal replacement of the triple bond by TCBD has a dramatic effect on their ground‐ and excited‐state features. In particular, the formation of extremely intense, ground‐state charge‐transfer interactions between ZnIIPc and the electron‐accepting TCBD were observed, something unprecedented not only in Pc chemistry but also in TCBD‐based porphyrinoid systems.  相似文献   

4.
We report a short synthetic route that provides optically active 2‐substituted hexahydro‐1H‐pyrrolizin‐3‐ones in four steps from commercially available Boc (tert‐but(oxy)carbonyl))‐protected proline. Diastereoisomers (−)‐ 11 and (−)‐ 12 were assembled from the proline‐derived aldehyde (−)‐ 8 and ylide 9 via a Wittig reaction and subsequent catalytic hydrogenation (Scheme 3). Cleavage of the Boc protecting group under acidic conditions, followed by intramolecular cyclization, afforded the desired hexahydro‐1H‐pyrrolizinones (−)‐ 1 and (+)‐ 13 . Applying the same protocol to ylide 19 afforded hexahydro‐1H‐pyrrolizinones (−)‐ 25 and (−)‐ 26 (Scheme 5). The absolute configuration of the target compounds was determined by a combination of NMR studies (Figs. 1 and 2) and X‐ray crystallographic analysis (Fig. 3).  相似文献   

5.
A brief overview is presented of the field of organocatalysis using chiral H‐bond donors, chiral Brønsted acids, and chiral counter‐anions (Fig. 1). The role of TADDOLs (=α,α,α′,α′‐tetraaryl‐1,3‐dioxolane‐4,5‐dimethanols) as H‐bond donors and the importance of an intramolecular H‐bond for acidity enhancement are discussed. Crystal structures of TADDOLs and of their N‐, S‐, and P‐analogs (Figs. 2 and 3) point the way to proposals of mechanistic models for the action of TADDOLs as organocatalysts (Scheme 1). Simple experimental two‐step procedures for the preparation of the hitherto strongest known TADDOL‐derived acids, the bicyclic phosphoric acids ( 2 in Scheme 2) and of a phosphoric‐trifluorosulfonic imide ( 9 in Scheme 4), are disclosed. The mechanism of sulfinamide formation in reactions of TADDAMIN with trifluoro‐sulfonylating reagents is discussed (Scheme 3). pKa Measurements of TADDOLs and analogs in DMSO (reported in the literature; Fig. 5) and in MeO(CH2)2OH/H2O (described herein; Fig. 6) provide information about further possible applications of this type of compounds as strong chiral Brønsted acids in organocatalysis.  相似文献   

6.
RhCl(PPh3)3‐catalyzed [4+2] intramolecular cycloaddition of optically active axially chiral allene‐dienes afforded cis‐fused [3.4.0]‐bicyclic products with three chiral centers in good yields with an excellent chemo‐ and diastereoselectivity. A pair of enantiomers of such products was generated highly selectively from both enantiomers of starting allene‐dienes, indicating that the axial chirality dictated the absolute configurations of the three in situ generated chiral centers with a very high efficiency of chirality transfer.  相似文献   

7.
In continuation of a previous study on the modulation of π‐electron conjugation of oligo(triacetylene)s by insertion of central hetero‐spacer fragments between two (E)‐hex‐3‐ene‐1,5‐diyne ((E)‐1,2‐diethynylethene, DEE) moieties (Fig. 1), a new series of trimeric hybrid oligomers ( 14 – 18 and 22 – 24 , Fig. 2) were prepared (Schemes 1–3). Spacers used were both electron‐deficient (quinoxaline‐based heterocycles, pyridazine) and electron‐rich (2,2′‐bithiophene, 9,9‐dioctyl‐9H‐fluorene) chromophores. With 19–21 (Scheme 4), a series of transition metal complexes was synthesized as potential precursors for nanoscale scaffolding based on both covalent acetylenic coupling and supramolecular assembly. The UV/VIS spectra (Fig. 3) revealed that the majority of spacers provided hetero‐trimers featuring extended π‐electron delocalization. The new hybrid chromophores show a dramatically enhanced fluorescence compared with the DEE dimer 13 and homo‐trimer 12 (Fig. 5). This increase in emission intensity appears as a general feature of these systems: even if the spacer molecule is non‐fluorescent, the corresponding hetero‐trimer may show a strong emission (Table 2). The redox properties of the new hybrid chromophores were determined by cyclic voltammetry (CV) and rotating‐disk voltammetry (RDV) (Table 3 and Fig. 5). In each case, the first one‐electron reduction step in the hetero‐trimers appeared anodically shifted compared with DEE dimer 13 and homo‐trimer 12 . With larger spacer chromophore extending into two dimensions (as in 14 – 18 , Fig. 2), the anodic shift (by 240–490 mV, Table 3) seems to originate from inductive effects of the two strongly electron‐accepting DEE substituents rather than from extended π‐electron conjugation along the oligomeric backbone, as had previously been observed for DEE‐substituted porphyrins.  相似文献   

8.
We report on the synthesis and electronic spectra of the chiral, donor‐acceptor (push‐pull) chromophores (±)‐ 4 and (±)‐ 5 with a 6H,12H‐5,11‐methanodibenzo[b,f][1,5]diazocine scaffold (Scheme 1 and Fig. 2). The electronic structures of these compounds were investigated at a quantum‐chemical level (Figs. 2 and 3). The chemical reactivity of 6H,12H‐5,11‐methanodibenzo[b,f][1,5]diazocine ((±)‐ 11 ) towards aromatic electrophilic substitution (Scheme 2 and Table) provided additional information about its electronic structure and confirmed nonnegligible delocalization of the lone pair of the bridge‐head N‐atoms in this heterocyclic system.  相似文献   

9.
The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a ZnII porphyrin (ZnP) linked to one or two anilino donor‐substituted pentacyano‐ (PCBD) or tetracyanobuta‐1,3‐dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP‐S‐PCBD ( 1 ), ZnP‐S‐TCBD ( 2 ), ZnP‐TCBD ( 3 ), ZnP‐(S‐PCBD)2 ( 4 ), and ZnP‐(S‐TCBD)2 ( 5 ). By means of steady‐state and time‐resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer ( 1 , 4 ), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD ( 2 , 5 ), photoinduced electron transfer occurs in benzonitrile, generating a charge‐separated (CS) state lasting 2.3 μs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔGCR=?1.39 eV), suggests a back‐electron transfer process occurring in the so‐called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor–acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron‐accepting cyanobuta‐1,3‐dienes might become promising alternatives to quinone‐, perylenediimide‐, and fullerene‐derived acceptors in multicomponent modules featuring photoinduced electron transfer.  相似文献   

10.
In this paper, we report the synthesis and opto‐electronic properties of differentially substituted 1,4‐diethynyl‐ and 1,1,4,4‐tetraethynylbuta‐1,2,3‐trienes. These novel chromophores greatly extend the series of building modules for oxidative coupling, which includes 1,2‐diethynyl‐ and 1,1,2,2‐tetraethynylethenes and 1,3‐diethynylallenes (Fig. 1). A general synthesis of 1,1,4,4‐tetraethynylbutatrienes, which tolerates a significant number of peripheral substituents, starts from pentadiynols that are oxidized to the corresponding dialkynyl ketones, followed by Corey–Fuchs dibromo‐olefination, and transition metal mediated dimerization (Schemes 2 and 3). A similar protocol, including oxidation of propargyl aldehydes, dibromo‐olefination, and dimerization yields the less stable 1,4‐diethynylbutatrienes (Scheme 4). Attempts to prepare 1,1,4,4‐tetraethynylbutatrienes with four terminal electron‐donor‐substituted aryl groups failed so far, mainly due to difficulties in the dibromoolefination step (Scheme 6). cis‐trans‐Isomerization of differentially substituted 1,1,4,4‐tetraethynylbutatrienes is remarkably facile, with barriers to rotation in the range of those for peptide bond isomerization (ΔG≈20 kcal mol?1). Barriers to rotation of 1,4‐diethynylbutatrienes are higher (ΔG≈25 kcal mol?1), allowing in some cases the isolation of pure isomers. Both UV/VIS spectroscopy (Figs. 2 and 3) and electrochemical studies (Table) demonstrate that the all‐C‐cores in diethynyl‐ and tetraethynylbutatrienes have strong electron‐acceptor properties that are greatly enhanced with respect to those of diethynyl‐ and tetraethynylethenes with two C(sp)‐atoms less. Substitution with peripheral electron donor groups leads to efficient intramolecular charge‐transfer interactions, as evidenced by intense, bathochromically shifted longest‐wavelength bands in the UV/VIS spectra.  相似文献   

11.
Replacement of one OH group in TADDOL (=α,α,α′,α′‐tetraaryl‐1,3‐dioxolane‐4,5‐dimethanol) by an OOH group gives a stable, crystalline chiral hydroperoxy alcohol TADOOH (={(4R,5R)‐5‐[(hydroperoxydiphenyl)methyl]‐2,2‐dimethyl‐1,3‐dioxolan‐4‐yl}diphenylmethanol) 3 , the crystal structure of which resembles those of numerous other TADDOL derivatives (Fig. 2). The new hydroperoxide was tested as chiral oxidant in three types of reactions: the epoxidation of enones with base catalysis (Scheme 2), the sulfoxidation of methyl phenyl sulfide (Scheme 3), and the Baeyer‐Villiger oxidation of bicyclic and tricyclic cyclobutanones, rac‐ 10a – d with kinetic resolution (Scheme 4, Fig. 3, and Table). Products of up to 99% enantiomer puritiy were isolated (the highest values yet observed for oxidations with a chiral hydroperoxide!). Mechanistic models are proposed for the stereochemical courses of the three types of reactions (Schemes 5 and 6, and Fig. 4). Results of AM1 calculations of the relative transition‐state energies for the anionic rearrangements of the exo Criegee adducts of TADOOH to the enantiomeric bicyclo[3.2.0]heptan‐6‐ones are in qualitative agreement with the observed relative rates (Table and Fig. 5).  相似文献   

12.
The cyclohexene‐derived aziridine 7‐tosyl‐7‐azabicyclo[4.1.0]heptane ( 1 ) reacts with Grignard reagents in the presence of chiral nonracemic Cu‐catalysts to afford sulfonamides 3a – e (Scheme 3) in up to 91% ee under optimized conditions (Table 2). No activation of the aziridine by Lewis acids is required. The reaction may be extended to other bicyclic N‐sulfonylated aziridines, but aziridines derived from acyclic olefins, cyclooctene, and trinorbornene are unreactive under standard conditions (Scheme 5). Exposure of 1 to s‐BuLi in the presence of (−)‐sparteine (2.8 equiv.) affords the allylic sulfonamide 31 in 35% yield and 39% ee (Scheme 6). Under the same conditions, the aziridines 33 and 35 yield products 34 and 36 derived from intramolecular carbenoid insertion with 75 and 43% ee, respectively.  相似文献   

13.
A full account is given of the preparation and use of TADDOLates, which are dendritically incorporated in polystyrene beads (Scheme 1). A series of styryl‐substituted TADDOLs with flexible, rigid, or dendritically branching spacers between the TADDOL core and the styryl groups (2–16 in number) has been prepared ( 5 – 7, 20, 21, 26 in Schemes 24 and Fig. 13). These were used as cross‐linkers in styrene‐suspension polymerization, leading to beads of ca. 400‐μm diameter (Schemes 5 and 6, b). These, in turn, were loaded with titanate and used for the Lewis acid catalyzed addition of Et2Zn to PhCHO as a test reaction (Scheme 6). A comparison of the enantioselectivities and degrees of conversion (both up to 99%), obtained under standard conditions, shows that these polymer‐incorporated Ti‐TADDOLates are highly efficient catalysts for this process (Table 1). In view of the effort necessary to prepare the novel, immobilized catalysts, emphasis was laid upon their multiple use. The performance over 20 cycles of the test reaction was best with the polymer obtained from the TADDOL bearing four first‐generation Fréchet branches with eight peripheral styryl groups ( 6 , p‐ 6 , p‐ 6 ⋅Ti(OiPr)2): the enantioselectivity (Fig. 4), the rate of reaction (Fig. 5), and the swelling factor (Fig. 6) were essentially unchanged after numerous operations carried out with the corresponding beads of 400‐μm diameter and a degree of loading of 0.1 mmol TADDOLate/g polymer, with or without stirring (Fig. 7). The rate with the dendritically polymer‐embedded Ti‐TADDOLate (p‐ 6 ⋅Ti(OiPr)2) was greater than that measured with the corresponding monomer, i.e., 6 ⋅Ti(OiPr)2 (Fig. 8). Possible interpretations of this phenomenon are proposed. A polymer‐bound TADDOL, generated on a solid support (by Grignard addition to an immobilized tartrate ester ketal) did not perform well (Scheme 4 and Table 2). Also, when we prepared polystyrene beads by copolymerization of styrene, a zero‐, first‐, or second‐generation dendritic cross‐linker, and a mono‐styryl‐substituted TADDOL derivative, the performance in the test reaction did not rival that of the dendritically incorporated Ti‐TADDOLate ((p‐ 6 ⋅Ti(OiPr)2) (Scheme 7 and Fig. 10). Finally, we have applied the dendritically immobilized Cl2 and (TsO)2Ti‐TADDOLate as chiral Lewis acid to preferentially prepare one enantiomer of the exo and the endo (3+2) cycloadduct, respectively, of diphenyl nitrone to 3‐crotonoyl‐1,3‐oxazolidinone; in one of these reaction modes, we have observed an interesting conditioning of the catalyst: with an increasing number of application cycles, the amount of polymer‐incorporated Lewis acid required to induce the same degree of enantioselectivity, decreased; the degrees of diastereo‐ and enantioselectivity were, again, comparable to those reported for homogeneous conditions (Fig. 9).  相似文献   

14.
N‐Boc‐protected L ‐proline ( 6 ) was converted into the bicyclic lactim ether (8aS)‐6,7,8,8a‐tetrahydro‐1‐methoxypyrrolo[1,2‐a]pyrazin‐4(3H)‐one ( 5 ) in four steps (Scheme 1). Deprotonation with LDA or LHMDS and subsequent alkylation resulted in the diastereoisomeric products cis‐ and trans‐ 9 . The diastereoselectivity was mainly dependent on the electrophile. Whereas small alkyl halides gave preferably cis‐ 9 , sterically more‐demanding alkyl halides resulted in cis/trans mixtures. Electrophiles bearing a π‐system favored the trans‐products 9 . Some isolated cis‐ and trans‐lactim ethers 9 were converted to the corresponding diketopiperazines cis‐ and trans‐ 10 by acid hydrolysis. The structures and configurations of several compounds were confirmed by NMR and NOE experiments, as well as by X‐ray crystallography (Figs. 1–4).  相似文献   

15.
A general method for the oxidative substitution of nido‐carborane (7,8‐C2B9H12?) with N‐heterocycles has been developed by using 2,3‐dichloro‐5,6‐dicyanobenzoquinone (DDQ) as an oxidant. This metal‐free B?N coupling strategy, in both inter‐ and intramolecular fashions, gave rise to a wide array of charge‐compensated, boron‐substituted nido‐carboranes in high yields (up to 97 %) with excellent functional‐group tolerance under mild reaction conditions. The reaction mechanism was investigated by density‐functional theory (DFT) calculations. A successive single‐electron transfer (SET), B?H hydrogen‐atom transfer (HAT), and nucleophilic attack pathway is proposed. This method provides a new approach to nitrogen‐containing carboranes with potential applications in medicine and materials.  相似文献   

16.
A new synthesis of (?)‐(R)‐muscone ((R)‐ 1 ) by means of enantioselective protonation of a bicyclic ketone enolate as the key step (see 6 →(S)‐ 4 in Scheme 2) is presented. The C15 macrocyclic system is obtained by ozonolysis (Scheme 7).  相似文献   

17.
The diastereoselective synthesis of the N‐ and O‐protected hoprominol derivative (R,R,R)‐ 6 is described. The building up of the bicyclic O‐silylated and di(N‐tosylated) asymmetric scaffold 6 succeeded by convergent preparation of the two basic chiral azalactam units 7a and 7b and their subsequent iterative linking by a known method (Scheme 5). Both 4‐alkyl‐hexahydro‐1,5‐diazocin‐2(1H)‐ones 7a and 7b were prepared from the chiral β‐amino acid portions 10a and 10b , respectively, by application of a set of reactions (e.g., N‐alkylation of 10a , b and Sb(OEt)3‐assisted cyclization of the resulting open‐chain intermediates) already known. In comparison with the total syntheses of homaline ( 1 ) and homoprine ( 2 ), the newness of the described synthesis lies in the asymmetric approach to the difunctionalized fatty acid derivative 10b starting from (?)‐(S)‐malic acid ( 9 ) (Schemes 3 and 4). Key step in the preparation of 10b was the diastereoselective amination of the optically pure α,β‐unsaturated δ‐hydroxy homoallylic ester 14 via conjugate intramolecular aza‐Michael cyclization of the acylic δ‐(carbamoyloxy) intermediate 11 .  相似文献   

18.
A cycloaddition–retroelectrocyclization reaction between tetracyanoethylene and two zinc phthalocyanines (ZnIIPcs) bearing one or four anilino‐substituted alkynes has been used to install a strong, electron‐accepting tetracyanobuta‐1,3‐diene (TCBD) between the electron‐rich ZnIIPc and aniline moieties. A combination of photophysical, electrochemical, and spectroelectrochemical investigations with the ZnIIPc‐TCBD‐aniline conjugates, which present panchromatic absorptions in the visible region extending all the way to the near infrared, show that the formal replacement of the triple bond by TCBD has a dramatic effect on their ground‐ and excited‐state features. In particular, the formation of extremely intense, ground‐state charge‐transfer interactions between ZnIIPc and the electron‐accepting TCBD were observed, something unprecedented not only in Pc chemistry but also in TCBD‐based porphyrinoid systems.  相似文献   

19.
The syntheses of tetraamines 10 (Scheme 3) and 17 (Scheme 4), which might be useful as rigid organizing scaffolds in dynamic or standard combinatorial chemistry, are described. The Diels‐Alder reaction of the electron‐rich dienophile 1,3‐diacetyl‐2,3‐dihydro‐1H‐imidazol‐2‐one ( 5 ) with benzo[c]thiophene or 2H‐pyran‐2‐one is the key step in their preparation. The intermediate fused cyclic diureas 9 and 16 are dimethylglycoluril analogues, and their crystal structures are examined. Diurea 9 (Fig. 2) crystallizes as a hydrate and forms undulating chains through a network of H‐bonds. These chains are interconnected through H‐bonds to the H2O molecules. H2O Molecules are not incorporated in the crystal of `bis‐urea' 16 (Fig. 3), the molecules of which associate through an extended three‐dimensional H‐bonding network.  相似文献   

20.
With the aim to develop a general approach to a total synthesis of aminoacylated t‐RNAs and analogues, we describe the synthesis of stabilized, aminoacylated RNA fragments, which, upon ligation, could lead to aminoacylated t‐RNA structures. Novel RNA phosphoramidites with fluoride‐labile 2′‐O‐[(triisopropylsilyl)oxy]methyl (=tom) sugar‐protecting and N‐{{2‐[(triisopropylsilyl)oxy]benzyl}oxy}carbonyl (=tboc) base‐protecting groups were prepared (Schemes 4 and 5), as well as a solid support containing an immobilized N6‐tboc‐protected adenosine with an orthogonal (photolabile) 2′‐O‐[(S)‐1‐(2‐nitrophenyl)ethoxy]methyl (=(S)‐npeom) group (Scheme 6). From these building blocks, a hexameric oligoribonucleotide was prepared by automated synthesis under standard conditions (Scheme 7). After the detachment from the solid support, the resulting fully protected sequence 34 was aminoacylated with L ‐phenylalanine derivatives carrying photolabile N‐protecting groups (→ 42 and 43 ; Scheme 9). Upon removal of the fluoride‐labile sugar‐ and nucleobase‐protecting groups, the still stabilized, partially with the photolabile group protected precursors 44 and 45 , respectively, of an aminoacylated RNA sequence were obtained (Scheme 9 and Fig. 3). Photolysis of 45 under mild conditions resulted in the efficient formation of the 3′(2′)‐O‐aminoacylated RNA sequence 46 (Fig. 4). Additionally, we carried out model investigations concerning the stability of ester bonds of aminoacylated ribonucleotide derivatives under acidic conditions (Table) and established conditions for the purification and handling of 3′(2′)‐O‐aminoacylated RNA sequences and their stabilized precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号