首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When ‘thiocarbonyl ylide' 1A (=(2,2,4,4‐tetramethyl‐3‐oxocyclobutylidenesulfonio)methanide) is generated from the dihydrothiadiazole 5A by N2 extrusion at 40° in the presence of 2,3‐bis(trifluoromethyl)fumaronitrile ((E)‐ 10 ), a cyclic seven‐membered ketene imine 11 and trans‐thiolane 12 are formed (81 : 19). The reaction of 1A with (Z)‐ 10 furnishes 11, 12 , and cis‐thiolane 25 in the ratio of 82 : 12 : 6. The strained ketene imine 11 is crystalline and storable as a consequence of the stabilizing ‘perfluoroalkyl effect'. The ketene imine group is stereogenic; 11 has a transoid structure with respect to the CF3 groups, and there is no evidence for the cisoid diastereoisomer. Ketene imine 11 adds H2O, MeOH, and PhNH2. In solution at 60°, 11 undergoes an irreversible ring contraction, furnishing the thiolanes 12 / 25 98 : 2. The rate constant of this first‐order rearrangement increases 850‐fold, as the solvent polarity rises from cyclohexane to CD3CN, in accordance with a zwitterionic intermediate. It is the same intermediate that is initially formed from 1A and 10 , and its intramolecular N‐ and C‐alkylation give rise to 11 and 12 + 25 , respectively. In contrast to 1A , thiocarbonyl ylide 27 , which harbors the sterically less‐demanding adamantylidene group, reacts with (E)‐ 10 to give trans‐thiolane 29 , but no ketene imine. The precursor 26 catalyzes the (Z)/(E) isomerization of 10 ((E)/(Z) ca. 95 : 5 at equilibrium), thus obviating conclusions on steric course and mechanism of this cycloaddition.  相似文献   

2.
On irradiation (350 nm) in benzene as solvent, dioxepinone 6 and benzoxepinone 7 afford quantitatively mixtures of two diastereoisomeric head‐to‐head dimers, respectively. In both cases, on contact with SiO2 the minor dimer containing trans‐ring fusions undergoes spontaneous isomerization to the (major) cis‐transoid‐cis diastereoisomer. In contrast, thiopyranone 8 is converted selectively, but in very low yield, to dimer 13 .  相似文献   

3.
(E) and (Z)‐1,2‐bis(trifluoromethyl)ethene‐1,2‐dicarbonitrile (BTE; (=E) and (Z)‐1,2‐bis(trifluoromethyl)but‐2‐enedinitrile) were reacted with an excess of methyl vinyl ether, used as solvent, and furnished 1 : 2 adducts 6 (54%) and cyclobutanes 3 as 1 : 1 adducts (41%). The four diastereoisomeric bis‐adducts 6 (different ratios from (E) and (Z)‐BTE) are derivatives of 1‐azabicyclo[4.2.0]oct‐5‐ene; X‐ray analyses and 19F‐NMR spectra revealed their structures. Since the cyclobutanes 3 are resistant to vinyl ether, the pathways leading to mono‐ and bis‐adducts must compete on the level of the intermediate l,4‐zwitterions 1 and 2 . The latter either cyclize to the cyclobutanes 3 or to six‐membered cyclic ketene imines 8 which accept a second molecule of vinyl ether to yield the bis‐adducts 6 . The occurrence of the highly strained ketene imines 8 gains credibility by comparison to stable seven‐membered cyclic ketene imines recently reported.  相似文献   

4.
(E)‐ and (Z)‐1,2‐bis(trifluoromethyl)ethene‐1,2‐dicarbonitrile ((E)‐ and (Z)‐BTE, resp., =(E)‐ and (Z)‐2,3‐bis(trifluoromethyl)but‐2‐enedinitrile) were used as a stereochemical probe in studying (2+2) cycloadditions of acceptor with donor alkenes. The additions to methyl (E)‐ and (Z)‐propenyl ether gave rise to the eight conceivable cyclobutanes 8 , although in different ratios in reactions of (E)‐ and (Z)‐BTE. The 19F‐NMR data served the structural assignment and the quantitative analysis. The mechanistic discussion is based on rotations and ring closures of the assumed 1,4‐zwitterionic intermediates. Dimethylketene dimethyl acetal, methylketene dimethyl acetal, and ketene diethyl acetal show an increasing rate in their reactions with BTE as well as in the equilibration of the cycloadducts.  相似文献   

5.
The cycloadditions of methyl diazoacetate to 2,3‐bis(trifluoromethyl)fumaronitrile ((E)‐ BTE ) and 2,3‐bis(trifluoromethyl)maleonitrile ((Z)‐ BTE ) furnish the 4,5‐dihydro‐1H‐pyrazoles 13 . The retention of dipolarophile configuration proceeds for (E)‐ BTE with > 99.93% and for (Z)‐ BTE with > 99.8% (CDCl3, 25°), suggesting concertedness. Base catalysis (1,4‐diazabicyclo[2.2.2]octane (DABCO), proton sponge) converts the cycloadducts, trans‐ 13 and cis‐ 13 , to a 94 : 6 equilibrium mixture (CDCl3, r.t.); the first step is N‐deprotonation, since reaction with methyl fluorosulfonate affords the 4,5‐dihydro‐1‐methyl‐1H‐pyrazoles. Competing with the cis/trans isomerization of 13 is the formation of a bis(dehydrofluoro) dimer (two diastereoisomers), the structure of which was elucidated by IR, 19F‐NMR, and 13C‐NMR spectroscopy. The reaction slows when DABCO is bound by HF, but F? as base keeps the conversion to 22 going and binds HF. The diazo group in 22 suggests a common intermediate for cis/trans isomerization of 13 and conversion to 22 : reversible ring opening of N‐deprotonated 13 provides 18 , a derivative of methyl diazoacetate with a carbanionic substituent. Mechanistic comparison with the reaction of diazomethane and dimethyl 2,3‐dicyanofumarate, a related tetra‐acceptor‐ethylene, brings to light unanticipated divergencies.  相似文献   

6.
The reaction of the sterically shielded phosphane derivative, dichlorodiethylaminophosphane, Cl2PNEt2, with an excess of a mixture of 2,6‐bis(trifluoromethyl) and 2,4‐bis(trifluoromethyl)phenyl lithium gives bis[2,4‐bis(trifluoromethyl)phenyl]diethylaminophosphane, [2,4‐(CF3)2C6H3]2PNEt2, in 72 % yield as a colourless solid, while 2,6‐bis(trifluoromethyl)phenyl lithium remains unchanged in solution. The amino derivative crystallizes in the monoclinic space group P21/c (a 869.2(1), b 1857.4(1), c 1357.6(1) pm, β 100.57(4)°, Z = 4). Treatment of [2,4‐(CF3)2C6H3]2PNEt2 in CHCl3 solution with conc. HCl allows the synthesis of [2,4‐(CF3)2C6H3)]2PCl. [2,4‐(CF3)2C6H3]2PCl reacts with H2O in THF solution with quantitative formation of the corresponding secondary phosphane oxide. To obtain bis[2,4‐bis(trifluoromethyl)phenyl]phosphinic acid, [2,4‐(CF3)2C6H3]2P(O)OH, quantitatively, a CHCl3 solution of [2,4‐(CF3)2C6H3]2P(O)H, has to be stirred in an NO2 atmosphere. The phosphinic acid crystallizes is the triclinic space group (a 754.2(1), b 927.6(2), c 1305.5(2) pm, α 85.11(2)°, β 75.45(1)°, γ 79.99(2)°, Z = 2). From the reaction of the phosphinic acid with either elemental sodium or with cyanide salts, the corresponding phosphinate salts are obtained in an almost quantitatively yield.  相似文献   

7.
Treatment of 1,1‐bis(pinacolatoboryl)ethene with an excess of 1‐bromo‐1‐lithioethene gave 2,3‐bis(pinacolatoboryl)‐1,3‐butadiene in high yield. Palladium‐catalyzed cross‐coupling of the resulting diborylbutadiene with aryl iodides took place smoothly in the presence of a catalytic amount of Pd(OAc)2/PPh3 and aqueous KOH to give 2,3‐diaryl‐1,3‐butadienes in good yields. The coupling reaction with commercially available 4‐acetoxyphenylmethyl chloride under the same conditions followed by hydrolysis of the acetyl groups gave anolignan B in a one‐pot manner. A variety of [3]‐ to [6]dendralenes were synthesized by palladium‐catalyzed coupling of the diene or 1,1‐bis(pinacolato)borylethene with alkenyl or dienyl halides, respectively, in good yields.  相似文献   

8.
Cycloaddition reaction of 2,5‐bis(trifluoromethyl)‐1,3,4‐oxadiazole with strained olefinic bonds of norbornenes was used to synthetize functionalized polynorbornanes. This simple, one step procedure was more effective when reaction was carried out by classical heating, in comparison to microwave‐assisted reactions. Various functional groups were stable in the reaction conditions (ester, imide, phthalimide, piperidyl, and carboxylic acid), whereas anhydride, N‐Boc, or TMS functionalities do not withstand reaction conditions.  相似文献   

9.
The molecules of 4,4‐bis(2‐carboxyethyl)pimelic acid (=4,4‐bis(2‐carboxyethyl)heptanedioic acid; 1 ) assemble to build up hollow, five‐fold interpenetrating diamond‐like networks in tetragonal crystals via standard pairwise H‐bonds between the carboxy groups. In keeping with the flat, extended molecular conformation of 1 of approximate D2d symmetry, the supramolecular diamondoid networks are tetragonally compressed. Their mode of interpenetration is unusual and corresponds to that of adamantane‐1,3,5,7‐tetracarboxylic acid, which has an undistorted five‐fold diamond structure. Both the degree and the mode of interpenetration of 1 differ from those of the lower homologue 3,3‐bis(carboxymethyl)glutaric acid ( 2 ), which adopts a more‐common tetragonally elongated triple‐diamond architecture in the solid state.  相似文献   

10.
Dynamic kinetic asymmetric amination of branched allylic acetimidates has been applied to the synthesis of 2‐alkyl‐dihydrobenzoazepin‐5‐ones. These seven‐membered‐ring aza ketones are prepared in good yield with high enantiomeric excess by rhodium‐catalyzed allylic substitution with 2‐amino aryl aldehydes followed by intramolecular olefin hydroacylation of the resulting alkenals. This two‐step procedure is amenable to varied functionality and proves useful for the enantioselective preparation of these ring systems.  相似文献   

11.
The title compound (short version: BTE) occurs in (E)‐ and (Z)‐isomers (both with b.p. of ca. 100°) which equilibrate with nucleophilic catalysts. Both undergo (2+2) cycloadditions with methyl vinyl ether at 25°. Three stereogenic centers in the cyclobutanes led to four rac‐diastereoisomers, which were obtained in pure and crystalline state. The structures were elucidated by 19F‐NMR spectroscopy and confirmed by two X‐ray analyses. The cycloadditions were not stereospecific: e.g., (E)‐BTE furnished 73% trans‐adducts (with respect to the CF3 groups) and 27% cis‐adducts. The loss of stereochemical integrity occurs in the intermediate gauche‐zwitterions which can cyclize or rotate, but not dissociate. Under extreme conditions (2M LiClO4 in Et2O, 70°, 3 months), the thermodynamic equilibrium of the four cyclobutanes was achieved. Considerations of Coulombic attraction and conformational strain in the zwitterionic intermediates allow us to rationalize the observed proportions of diastereoisomeric cyclobutanes. Ethyl vinyl ether and butyl vinyl ether furnished cyclobutanes in similar diastereoisomer ratios.  相似文献   

12.
Novel bis([1,2,4]triazolo[1,5‐a]pyrimidines) and bis(2‐thioxo‐2,3‐dihydropyrido[2,3‐d]pyrimidin‐4(1H)‐ones) were prepared utilizing bis(enaminones) as precursors. The structures of the prepared compounds were elucidated by several spectral tools as well as elemental analyses.  相似文献   

13.
The reaction of 1,4,5‐trisubstituted 1H‐imidazole‐3‐oxides 1 with 2,2‐bis(trifluoromethyl)ethene‐1,1‐dicarbonitrile ( 7 , BTF) yielded the corresponding 1,3‐dihydro‐2H‐imidazol‐2‐ones 10 and 2‐(1,3‐dihydro‐2H‐imidazol‐2‐ylidene)malononitriles 11 , respectively, depending on the solvent used. In one example, a 1 : 1 complex, 12 , of the 1H‐imidazole 3‐oxide and hexafluoroacetone hydrate was isolated as a second product. The formation of the products is explained by a stepwise 1,3‐dipolar cycloaddition and subsequent fragmentation. The structures of 11d and 12 were established by X‐ray crystallography.  相似文献   

14.
In this review, we summarize advances in [4+3] and a few other annulation/cycloaddition reactions for the construction of seven membered rings, with an emphasis on the literature subsequent to the year 2010. The type of products include the following: azepines, diazepines, benzazepinones, 1,2‐diazepinones, oxazepinones, benzothiazepines, benzodiazepinones, benzoxopinones, cyclohepta[b]indoles, benzoxazepines, azepino‐indoles, oxepines/oxazepanes, triazepines oxepinoindolones/azepinoindolones, oxadiazepines, azabicyclooctanes. Emphasis is also given to cover diverse types of annulations; possible intermediates are displayed in the illustrated schemes to aid future work.  相似文献   

15.
A synthesis of novel bis(triazolothiadiazines) 11 , 12 , 13 , 14 , bis(quinoxalines) 16 and 17 , bis(thiadiazoles) 24 and 25 , and bis(oxadiazole) 31 , which are linked to the thieno[2,3‐b]thiophene core via phenoxymethyl group, was reported. Thus, reaction of the bis(α‐bromoketones) 6 and 7 with the corresponding 4‐amino‐3‐mercapto‐1,2,4‐triazole derivatives 8 , 9 , 10 in ethanol–DMF mixture in the presence of a few drops of triethylamine as a catalyst under reflux afforded the novel bis(5,6‐dihydro‐s‐triazolo[3,4‐b]thiadiazines) 11 , 12 , 13 , 14 in 60–72% yields. The bis(quinoxalines) 16 and 17 were also synthesized as a sole product in high yields by the reaction of 6 and 7 with o‐phenylenediamine 15 in refluxing acetonitrile in the presence of piperidine as a catalyst. Cyclization of the bis(aldehyde thiosemicarbazones) 20 and 21 with acetic anhydride afforded the corresponding bis(4,5‐dihydro‐1,3,4‐thiadiazolyl) derivatives 24 and 25 in good yield. Bis(5‐phenyl‐2,3‐dihydro‐1,3,4‐oxadiazole) derivative 31 could be obtained in 67% yield by cyclization of the appropriate bis(N‐phenylhydrazone) 29 in refluxing acetic anhydride for 3 h.  相似文献   

16.
A one pot synthesis of 1H‐benzo[g]indoles, tetrahydrobenzo[h]quinolines, and naphtho[1,2‐b]azepines from 2‐alkynyl benzaldehydes and cyclic amino acids is reported. The salient feature of the strategy involves formation of three new bonds (one C? N and two C? C bonds) by a metal‐free decarboxylation/cyclization/one‐carbon ring expansion sequence in one pot.  相似文献   

17.
18.
19.
Heating of a mixture of N,N′-(thiocarbonyl)diimidazole (= 1,1′-(carbonothioyl)bis[1H-imidazole]; 1 ) and 2,5-dihydro-1,3,4-thiadiazole 2a or 2b gave the 1,3-dithiolanes 4a and 4b , respectively, via a regiospecific 1,3-dipolar cycloaddition of the corresponding ‘thiocarbonyl methanides’ 3a , b onto the C?S group of 1 (Schemes 1 and 2). The adamantane derivative 4b was not stable in the presence of 1H-imidazole and during chromatographic workup. The isolated 1,3-dithiole 5 is the product of a base-catalyzed elimination of 1H-imidazole from the initial cycloadduct 4b . The formation of the S,N-acetal 6 can be rationalized by a protonation of the ‘thiocarbonyl ylide’ 3b followed by a nucleophilic addition of 1H-imidazole. With the diazo compounds 8a–e (Scheme 3) 1 underwent a regiospecific 1,3-dipolar cycloaddition to give the corresponding 2,5-dihydro-1,3,4-thiadiazole derivatives 9 , which spontaneously eliminated 1H-imidazole to yield (1H-imidazol-1-yl)-1,3,4-thiadiazoles 10 . The structures of 10a and 10d were established by X-ray crystallography. In the case of diazodiphenylmethane ( 8f ), the initial cycloadduct 9f decomposed via a ‘twofold extrusion’ of N2 and S to give 1,1′-(2,2-diphenylethenylidene)bis[1H-imidazole] ( 11 ; Scheme 3).  相似文献   

20.
Change the ligand, change the stereochemistry : 2,3‐Bis(acetoxy)‐1,3‐dienes are obtained in a stereocontrolled manner by a novel tandem 1,2‐/1,2‐bis(acetoxy) rearrangement (see scheme, R1 and R2 are δ+ stabilizing). Upon stabilization of the reaction intermediates, the ligand attached to gold controls the stereochemistry of the alkene in the second acetate migration, that is, N‐heterocyclic carbenes (NHC) favor cis alkenes, whereas phosphine ligands selectively afford trans olefins.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号