首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(8):1111-1118
Abstract

Three enantioselective, potentiometric electrodes were proposed for the enantioanalysis of butaclamol. The electrodes were based on immobilization of maltodextrins (MDs) of different dextrose equivalences [4.0–7.0, I; 13–17, II; 16.5–19.5, III] into carbon paste. The electrodes based on MD I and II were used for the enantioanalysis of S-butaclamol within linear concentration ranges of 10?10 to 10?7 and 10?10 to 10?8, respectively, with slopes of 51.20 and 57.59 mV/decade of concentration; whereas the electrode based on MD III was used for the enantioanalysis of R-butaclamol within a linear concentration range between 10?10 and 10?7 with a slope of 58.50 mV/decade of concentration. Recoveries greater than 90% were recorded for the enantioanalysis of butaclamol in synthetic and urine samples.  相似文献   

2.
Quantitative assay of l-2-hydroxyglutaric acid (l-2-HGA) is important for the diagnosis of l-2-hydroxyglutaric aciduria. Three enantioselective, potentiometric membrane electrodes (EPMEs) based on maltodextrins with different dextrose equivalent (DE) (DE: 4.0-7.0 (I), 13.0-17.0 (II), 16.5-19.5 (III)), were designed for the enantioanalysis of l-2-HGA. The enantioselective, potentiometric membrane electrodes can be used reliably for enantiopurity assay of l-2-HGA using the direct potentiometric method in the ranges of 10−9-10−5, 10−6-10−3 and 10−8-10−5 mol L−1 for the enantioselective, potentiometric membrane electrodes based on maltodextrins I, II and III, respectively, with very low detection limits. A high reliability was obtained when the electrodes were used for the assay of l-2-HGA in urine samples.  相似文献   

3.
《Analytical letters》2012,45(5):764-774
Abstract

Maltodextrins with different dextrose equivalent (DE) values (maltodextrin I: DE 4.0–7.0; maltodextrin II: DE 13.0–17.0; maltodextrin III: DE 16.5–19.5) were used for the design of three enantioselective, potentiometric membrane electrodes (EPMEs) for the assay of S-ketoprofen. The linear concentration ranges for the proposed electrodes were 10?10 to 10?8, 10?9 to 10?5, and 10?10 to 10?7 mol/L, with slopes of 58.0, 58.67, and 58.93 mV/decades of concentration and limits of detection of 1.49 × 10?8, 2.43 × 10?8, and 4.19 × 10?11 mol/L for EPMEs based on maltodextrin I, II, and III, respectively. The EPMEs showed high reliability and effectiveness for the enantioanalysis of S-ketoprofen raw material and its pharmaceutical formulations.  相似文献   

4.
《Analytical letters》2012,45(6):968-975
Three enantioselective, potentiometric electrodes (EPMEs) based on maltodextrins with different values of dextrose equivalent (DE) (maltodextrin I: DE 4.0–7.0; maltodextrin II: DE 13–17; maltodextrin III DE 16.5–19.5) were proposed for the assay of L-histidine in histidine raw materials and from its pharmaceutical formulation. The slopes of the electrodes were 58.3, 58.9, and 58.5 mV/decade of concentration for maltodextrin I, II, and III-based electrodes, respectively, and the detection limits were 1.97 × 10?12 mol/L, 1.72 × 10?12 mol/L, and 1.4 × 10?11 mol/L, respectively. All the electrodes are enantioselective and selective over polyvinylpyrrolidone, creatine, and creatinine. The L-histidine can be determined in the presence of D-histidine with recovery values higher than 99.10%. The proposed electrodes were successfully used for uniformity content tests of L-histidine in food supplements; the average recovery was higher than 97.30%. The surfaces of the electrodes were stable and easily renewable by simply polishing the alumina paper.  相似文献   

5.
《Analytical letters》2012,45(4):675-682
Abstract

Enantioselective, potentiometric membrane electrodes (EPMEs) based on antibiotics are proposed for the enantioanalysis of L‐vesamicol. A carbon paste was modified with antibiotics (vancomycin, teicoplanin, and teicoplanin modified with acetonitrile), as chiral selectors. The EPMEs based on antibiotics were reliably used for enantiopurity tests of L‐vesamicol using the direct potentiometric technique. The following linear concentration ranges: 1.0×10?6–1.0×10?4, 1.0×10?6–1×10?3 and 1×10?7?1×10?2 mol/L; and detection limits: 1.1×10?7, 9.6×10?8, and 3.6×10?8 mol/L were determine for vancomycin, teicoplanin, and teicoplanin modified with acetonitrile–based EPMEs, respectively. The proposed EPMEs were applied for the enantioanalysis of L‐vesamicol in urine samples.  相似文献   

6.
《Analytical letters》2012,45(12):1847-1855
Abstract

Enantioselective, potentiometric membrane electrodes (EPMEs) based on immobilization of β‐, γ‐cyclodextrin (CD) or 2‐hydroxy‐3‐trimethylammoniopropyl‐β‐cyclodextrin (as chloride salt) (β‐CD‐derivative) in carbon paste have been designed. The β‐CD and β‐CD‐derivative‐based electrodes were applied in the 10?8–10?6 and 10?7–10?5 mol/L concentration ranges for the determination of L‐2‐hydroxyglutaric acid (L‐2‐HGA), whereas γ‐CD‐based electrode was applied for the determination of D‐2‐hydroxyglutaric acid (D‐2‐HGA) in the concentration range 10?6–10?4 mol/L. The β‐CD‐based EPME showed the lowest detection limit (1×10?9 mol/L). The enantioselectivity and selectivity of the proposed electrodes for the assay of L‐2‐HGA and D‐2‐HGA, respectively, were determined over D‐2‐HGA/L‐2‐HGA, creatine, and creatinine. The proposed EPMEs can be applied for the enantioanalysis of 2‐hydroxyglutaric acid in urine samples.  相似文献   

7.
Four new ion-selective electrodes (ISEs) based on poly-(1-4)-2-amino-2-deoxy-β-D-glucan (chitosan) ionophore were constructed for determination of uranyl ion (UO2(II)) over wide concentration ranges. The linear concentration range for carbon paste electrodes (CPEs) was 1 × 10–6–1 × 10–2 mol/L with a detection limit of 1 × 10–6 mol/L and that for the screen-printed electrode (SPEs) was 1 × 10–5–1 × 10–1 mol/L with a detection limit of 8 × 10–6 mol/L. The slopes of the calibration graphs were 29.90 ± 0.40 and 29.10 ± 0.60 mV/decade for CPEs with dibutylphthalate (DBP) (electrode I) and o-nitrophenyloctylether (o-NPOE) (electrode II) as plasticizers, respectively. Also, the SPEs showed good potentiometric slopes of 29.70 ± 0.30 and 28.20 ± 1.20 mV/decade with DBP (electrode III) and o-NPOE (electrode IV), respectively. The electrodes showed stable and reproducible potential over a period of 54, 62, 101 and 115 days for electrodes I, II, III, and IV, respectively. The electrodes manifested advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations except Ce(III) ion which interfere seriously. The results obtained compared well with those obtained using atomic absorption spectrometry.  相似文献   

8.
The construction and performance characteristics of new sensitive and selective in situ carbon paste (ICPE) and screen-printed (ISPE) potentiometric sensors modified with ion-pairing agents such as phosphotungstic acid, sodium tetraphenylborate, phosphomolybdic acid and ammonium reineckate for determination of econazole nitrate (ECN) have been developed. The reaction mechanism between ECN and ion-pairing agents at the electrode surface was studied through scanning electron microscope and energy-dispersive X-ray analysis. The electrodes under investigation showed potentiometric response for ECN in the concentration range from 1.0 × 10?6 to 5.0 × 10?3 mol L?1 and from 1.0 × 10?6 to 1.0 × 10?2 mol L?1 for ISPE (electrode I) and ICPE (electrode II) potentiometric sensors, respectively, at 25 °C. The electrode response was pH independent in the range 2.5–7.5 and 2.5–6.5 for electrodes I and II, respectively. These sensors have Nernstian slope values of 59.4 ± 0.2 and 59.10 ± 0.2 mV decade?1 with detection limit of 1.0 × 10?6 mol L?1 for electrodes I and II, respectively. The electrodes showed fast response time of 4 and 9 s for electrodes I and II, respectively. The ISPE (electrode I) showed lifetime of 28 days, and this was considered as advantage over ICPE (electrode II). Selectivity for ECN with respect to a number of interfering materials was also investigated. The proposed electrodes were applied for determination of ECN in pure and pharmaceutical formulation using calibration, potentiometric titration and standard addition methods. The results showed good agreement with those obtained using official method. The t and F values indicated no significant difference between the suggested and reported methods. Method validation parameters were optimized according to ICH recommendations.  相似文献   

9.
《Analytical letters》2012,45(6):1065-1073
Abstract

Three enantioselective, potentiometric membrane electrodes (EPMEs) based on carbon paste impregnated with different maltodextrins [dextrose equivalent (DE) (DE 4.0–7.0 (I), 13–17 (II), 16.5–19.5 (III)], were proposed as chiral selectors for the assay of S‐flurbiprofen raw materials and from its pharmaceutical formulation, Froben 100® tablets. The best response and enantioselectivity were obtained when maltodextrin with lower DE was used for the electrode design. The three EPMEs showed very low detection limits. The surfaces of the electrodes are easily renewable by simply polishing on an alumina paper.  相似文献   

10.
Double‐stranded DNA and multiwalled carbon nanotube (MWNT) complex modified glassy carbon electrodes (DNA‐MWNT‐GCE) were employed to discriminate penicillamine (PA) enantiomers. Cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and ultraviolet‐visible spectroscopy were used to characterize the enantioselective phenomenon. The results indicated that the binding effect between L ‐PA and DNA‐MWNTs was stronger than that of D ‐PA and DNA‐MWNTs. In addition, the influencing factors of the modified electrodes were systematically investigated. The modified electrodes exhibited a linear response towards PA enantiomers from 1.0×10?1 to 1.0×10?8 mol L?1 and detection limits of 3.1×10?9 and 3.3×10?8 mol L?1 for L ‐PA and D ‐PA, respectively.  相似文献   

11.
The lipophillic ammonium salt of 1‐pyrrolidine dicarbodithioic acid (PCDT) (I) was introduced as a new selective ionophore for an iron selective electrode. In addition, the effect of immobilization of 18‐crown‐6 (18CE6) (membrane type‐II), on the electrode performance was discussed. The slope of the PCDT‐based (I) electrode was (20 mV/decade). The linear concentration range was (10?5–10?1 M) after one day doping. The detection limit for electrode type‐(II) was (1.3×10?6 M). For membrane with only 18CE6 (type‐III) the linear range and the detection limit were improved (10?5–10?1 M and 3.2×10?6 M, respectively). The pH‐range was between 5–11 for type‐II, and III electrodes, while it was 7–11 for type‐I electrode. Most of the common cations were tested for the evaluation of the electrode selectivity with correlation to the ionic radii of the tested cations. Among them only Ag+ and Pb2+ were the real interference for type‐III electrode. Application of using the electrode for the determination of iron in lubrication oil samples was performed with RSD (1.77–2.7%) and (1.01–2.3%) for type‐II and III electrodes, respectively. The corresponding recovery ranges were (93.0–99.9%) and (96.3–100%). The obtained results were compared to those of an atomic absorption spectrophotometric method.  相似文献   

12.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed.  相似文献   

13.
Since to the best of our knowledge, there is no potentiometric sensors based on carbon paste electrodes were proposed for the potentiometric determination of molybdenum(VI) ion. In this study, 2,2′-(propane-1,3-diylbis(oxy))dibenzoic acid (PBODBA) was synthesized and used as modifier in the fabrication of carbon paste electrode (CPE) for the quantification of molybdenum(VI). The developed electrodes I and II showed hexavalent Nernstian response of 9.80±0.05 and 9.90±0.08 mV decade−1 over the concentration ranges of 1.0×10−7–1.0×10−3 and 1.0×10−8–1.0×10−3 mol L−1, respectively. The electrodes showed good selectivity for Mo(VI). The modified electrodes were applied for the determination of Mo(VI) concentration in masscuaje agricultural fertilizer and spiked juice extractions containing several metals.  相似文献   

14.

This article focused on the construction and characteristics of novelty and sensitivity of modified carbon paste electrodes for determination of doxycycline hydrochloride (DC.HCl) in urine, serum and pharmaceutical preparations. It was based on the incorporation of α-cyclodextrine (α-CD) and multi-walled carbon nanotube (MWCNT) ionophores which improved the characteristics of the electrodes with tricresylphosphate (TCP) (electrode I) and o-nitrophenyloctylether (o-NPOE) (electrode II) as plasticizers, respectively. The constructed electrodes, at optimum paste composition, exhibited good Nernstian response for determination of doxycycline hydrochloride over a linear concentration range from 1.0 × 10–7 to 1.0 × 10–2 and 1.22 × 10–7 to 1.0 × 10–2 mol L–1 with detection limit of 1.0 × 10–7 and 1.22 ×10–7 mol L–1 and with slope values of (58.7 ± 0.2) mV decade–1 and (58.0 ± 0.6) mV decade–1, for modified carbon paste electrodes (MCPEs; electrodes I and II), respectively. The results showed fast dynamic response time (about 6–7 s) and long lifetime in the range from 4 to 5 months where the response of the electrodes was not affected by pH variation within the range from 2 to 8 and 2 to 7.5 for electrodes I and II, respectively. Electrodes I and II showed high selectivity for doxycycline hydrochloride with respect to a large number of interfering species including foreign inorganic, organic species, excipients and the fillers added to the pharmaceutical preparation. The constructed electrodes were successfully applied for determination of DC.HCl in pure form, its pharmaceutical preparations and biological fluids (urine and serum) using standard addition, calibration curves and potentiometric titration methods. The results obtained using these potentiometric electrodes were comparable with those obtained using official method. The results were satisfactory with excellent percentage recovery comparable or better than those obtained by other routine methods.

  相似文献   

15.
Enantioselective, potentiometric membrane electrodes (EPMEs) based on carbon paste impregnated with different maltodextrins {dextrose equivalent (DE) 4.0-7.0 (I), 13.0-17.0 (II) and 16.5-19.5 (III)} as chiral selectors for the assay of S-perindopril is described. The proposed electrodes could be reliably employed in the assay of S-perindopril raw material and from its pharmaceutical formulation, Coversyl® tablets. The electrode based on maltodextrin (I) showed the best enantioselectivity and time-stability. The surfaces of the electrodes are easily renewable by simply polishing on an alumina paper.  相似文献   

16.
《Electroanalysis》2005,17(9):776-782
Three recently synthesized Schiff's bases were studied to characterize their ability as Cr3+ ion carrier in PVC‐membrane electrodes. The polymeric membrane (PME) and coated glassy carbon (CGCE) electrodes based on 2‐hydroxybenzaldehyde‐O,O′‐(1,2‐dioxetane‐1,2‐diyl) oxime (L1) exhibited Nernstian responses for Cr3+ ion over wide concentration ranges (1.5×10?6–8.0×10?3 M for PME and 4.0×10?7–3.0×10?3 M for CGCE) and very low limits of detection (1.0×10?6 M for PME and 2.0×10?7 M for CGCE). The proposed potentiometric sensors manifest advantages of relatively fast response and, most importantly, good selectivities relative to a wide variety of other cations. The selectivity behavior of the proposed Cr3+ ion‐selective electrodes revealed a considerable improvement compared to the best previously PVC‐membrane electrodes for chromium(III) ion. The potentiometric responses of the electrodes are independent of pH of the test solution in the pH range 3.0–6.0. The electrodes were successfully applied to determine chromium(III) in water samples.  相似文献   

17.
《Analytical letters》2012,45(9):1463-1475
Abstract

Etilefrine hydrochloride (EfCl) selective PVC membrane electrodes based on Etilefrinium phosphotungstate (I), Etilefrinium tetraphenylborate (II) and a mixture of both (III) were prepared, The electrodes exhibited near Nernstian response over the concentration ranges 5.0 × 10?6 - 1.0 × 10?1, 6.3 × 10?6 - 1.0 × 10?1 and 6.3 × 10?5 - 1.0 × 10?1 M EfCl for electrodes I, II and III, respectively. The working pH ranges of electrodes I, II and III were 10 - 8.0, 10 - 7.5 and 10 - 7.5 and their isothermal coefficients were 0.00150, 0.00088 and 0.00072 V/°C, respectively. The electrodes showed good selectivity to EfCl with respect to many inorganic cations, sugars and amino acids. The standard additions method was used to determine EfCl in pure solutions and in pharmaceutical preparations.  相似文献   

18.
Two new Ag(I) chemically modified carbon paste electrodes were prepared with comparative potentiometric study of 1,3,6,10,13-pentaaza-2,14-(2,6-pyridyl)-cyclotetradecane-4,12-dione (PPCT) and 1,3,6,9,11,12-pentaaza-2,13-(2,6-pyridyle)-bicycle[2,2,9]pentadecane-4,11-dione (PPBP) as ionophore. These sensors have been modified with sol–gel–Au nanoparticles to obtain a wide concentration range for potentiometric determination of Ag(I) in aqueous solutions. The sensors exhibit significantly enhanced selectivity toward Ag(I) ions over a wide concentration range of 4.0 × 10?9–2.2 × 10?2 and 2.2 × 10?7–2.0 × 10?2 mol L?1 with a lower detection limit of 2.5 × 10?9 and 2.0 × 10?7 mol L?1 for PPCT and PPBP modified electrodes respectively. The electrodes are highly selective to Ag(I) ions over a large number of mono, bi, and tri-valent cations. These electrodes were successfully used as indicator electrode for potentiometric determination of silver in sulphadiazine (burning cream) and radiological film.  相似文献   

19.
Three types of ion‐selective electrodes: PVC membrane, modified carbon paste (CPE), and coated graphite electrodes (CGE) have been constructed for determining paroxetine hydrochloride (Prx). The electrodes are based on the ion pair of paroxetine with sodium tetraphenylborate (NaTPB) using dibutyl phthalate as plasticizing solvent. Fast, stable and potentiometric response was obtained over the concentration range of 1.1×10?5–1×10?2 mol L?1 with low detection limit of 6.9×10?6 mol L?1 and slope of a 56.7±0.3mV decade?1 for PVC membrane electrode, the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 1.2×10?5 mol L?1 and slope of a 57.7±0.6 mV decade?1 for CPE, and the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 8.9×10?6 mol L?1 and slope of a 56.1±0.1 mV decade?1 for CGE. The proposed electrodes display good selectivity for paroxetine with respect to a number of common inorganic and organic species. The electrodes were successfully applied to the potentiometric determination of paroxetine hydrochloride in its pure state, its pharmaceutical preparation, human urine and plasma.  相似文献   

20.
《Electroanalysis》2003,15(22):1762-1770
The self‐assembling of the octa(hydroxyethylthio)‐metallophthalocyanine {MOHETPc (M=Co and Fe)} complexes and their similar analogues, octabutylthiometallophthalocyanine {MOBTPc (M=Co and Fe)} complexes on gold electrodes are investigated. Comparative surface voltammetric insights into their distinct self‐assembling properties with respect to the passivation of Faradaic processes and surface coverages, including their solution electrochemistry, suggest different orientations and non‐cleavage of their C? S bonds. In the pH 2?9 range, the reversible [M(III)Pc(?2)]+ / [M(II)Pc(?2)] redox couples show potential shifts close to ?59 mV / pH. The gold electrodes modified with the SAMs of these species show electrocatalytic activity towards the oxidation of thiols (L ‐cysteine, homocysteine and penicillamine) and thiocyanate in acidic media with detection limits in the region of 10?7–10?6 mol dm?3. These monolayers are stable and easily reproducible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号