首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The positional change of nitrogen‐7 of the RNA constituent guanosine to the bridgehead position‐5 leads to the base‐modified nucleoside 5‐aza‐7‐deazaguanosine. Contrary to guanosine, this molecule cannot form Hoogsteen base pairs and the Watson–Crick proton donor site N3—H becomes a proton‐acceptor site. This causes changes in nucleobase recognition in nucleic acids and has been used to construct stable `all‐purine' DNA and DNA with silver‐mediated base pairs. The present work reports the single‐crystal X‐ray structure of 7‐iodo‐5‐aza‐7‐deazaguanosine, C10H12IN5O5 ( 1 ). The iodinated nucleoside shows an anti conformation at the glycosylic bond and an N conformation (O4′‐endo) for the ribose moiety, with an antiperiplanar orientation of the 5′‐hydroxy group. Crystal packing is controlled by interactions between nucleobase and sugar moieties. The 7‐iodo substituent forms a contact to oxygen‐2′ of the ribose moiety. Self‐pairing of the nucleobases does not take place. A Hirshfeld surface analysis of 1 highlights the contacts of the nucleobase and sugar moiety (O—H…O and N—H…O). The concept of pK‐value differences to evaluate base‐pair stability was applied to purine–purine base pairing and stable base pairs were predicted for the construction of `all‐purine' RNA. Furthermore, the 7‐iodo substituent of 1 was functionalized with benzofuran to detect motional constraints by fluorescence spectroscopy.  相似文献   

2.
The isomorphous structures of the title molecules, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐3‐iodo‐1H‐pyrazolo‐[3,4‐d]pyrimidine, (I), C10H12IN5O3, and 4‐amino‐3‐bromo‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐pyrazolo[3,4‐d]­pyrimidine, (II), C10H12BrN5O3, have been determined. The sugar puckering of both compounds is C1′‐endo (1′E). The N‐­glycosidic bond torsion angle χ1 is in the high‐anti range [?73.2 (4)° for (I) and ?74.1 (4)° for (II)] and the crystal structure is stabilized by hydrogen bonds.  相似文献   

3.
The base‐pairing properties of oligonucleotides containing the anomeric 5‐aza‐7‐deazaguanine 2′‐deoxyribonucleosides 1 and 5 are described. The oligonucleotides were prepared by solid‐phase synthesis, employing phosphoramidite or phosphonate chemistry. Stable `purine'⋅purine duplexes with antiparallel (aps) chain orientation are formed, when the α‐D ‐anomer 5 alternates with the β‐D ‐anomeric 2′‐deoxyguanosine ( 2 ) within the same oligonucleotide chain. Parallel (ps) oligonucleotide duplexes are observed, when the β‐D anomer 1 alternates with 2 . A renewed reversal of the chain orientation (ps→aps) occurs when compound 1 pairs with 2′‐deoxyisoguanosine ( 6 ). In all cases, it is unnecessary to change the orientation within a single strand when α‐D units alternate with their β‐D counterparts. Heterochiral base pairs of 5 (α‐D ) with 2′‐deoxyisoguanosine (β‐D ) are well accommodated in duplexes with random base composition and parallel chain orientation. Base pairs of 5 (α‐D ) with 2′‐deoxyguanosine (β‐D ) destabilize duplexes with antiparallel chains.  相似文献   

4.
The synthesis of the 7‐halogenated derivatives 1b (7‐bromo) and 1c (7‐iodo) of 7‐deaza‐2′‐deoxyxanthosine ( 1a ) is described. A partial Br→I exchange was observed when the demethylation of 6‐methoxy precursor compound 4b was performed with Me3SiCl/NaI. This reaction is circumvented by the nucleophilic displacement of the MeO group under strong alkaline conditions. The halogenated 7‐deaza‐2′‐deoxyxanthosine derivatives 1b , c show a decreased S‐conformer population of the sugar moiety compared to the nonhalogenated 1a . They are expected to form stronger triplexes when they replace 1a in the 1 ?dA?dT base triplet.  相似文献   

5.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

6.
In the title compound, 4‐amino‐1‐(2‐deoxy‐β‐d ‐eythro‐pento­furan­osyl)‐3‐vinyl‐1H‐pyrazolo­[3,4‐d]­pyrimidine monohydrate, C12H15N5O3·H2O, the conformation of the gly­cosyl bond is anti. The furan­ose moiety is in an S conformation with an unsymmetrical twist, and the conformation at the exocyclic C—C(OH) bond is +sc (gauche, gauche). The vinyl side chain is bent out of the heterocyclic ring plane by 147.5 (5)°. The three‐dimensional packing is stabilized by O—H·O, O—H·N and N—H·O hydrogen bonds.  相似文献   

7.
Phosphorylation of suitable piperidine precursors yielded a series of novel decalin‐type O,N,P‐heterocycles. The title compounds, P(3)‐axially and P(3)‐equatorially X‐substituted, cis‐ and trans‐configurated 2,4‐dioxa‐7‐aza‐, 2,4‐dioxa‐8‐aza‐, and 2,4‐dioxa‐9‐aza‐3‐phosphabicyclo[4.4.0]decane 3‐oxides (X=Cl, F, 4‐nitrophenoxy, and 2,4‐dinitrophenoxy), are configuratively fixed and conformationally constrained P‐analogues of acetylcholine and as such represent acetylcholine (7‐aza and 9‐aza isomers) or γ‐homo‐acetylcholine mimetics (8‐aza isomers). Being irreversible inhibitors of acetylcholinesterase (AChE), the compounds are considered to be suitable probes for the investigation of the stereochemical course of the inhibition reaction by 31P‐NMR spectroscopy. Moreover, the design of these mimetics will enable studies of molecular interactions with AChE, in particular, the recognition conformation of acetylcholine.  相似文献   

8.
We describe robust and efficient synthetic methods for the synthesis of the preQ0 and preQ1 bases, which are the biosynthetic precursors of the hypermodified RNA nucleoside queuosine. The X‐ray crystal‐structure analysis of preQ1 is also described.  相似文献   

9.
Practical syntheses of 2‐keto‐3‐deoxy‐D ‐xylonate (D ‐KDX) and 2‐keto‐3‐deoxy‐L ‐arabinonate (L ‐KDA) that rely on reaction of the anion of ethyl 2‐[(tert‐butyldimethylsilyl)oxy]‐2‐(dimethoxy phosphoryl) acetate with enantiopure glyceraldehyde acetonide, followed by global deprotection of the resultant O‐silyl‐enol esters, have been developed. This has enabled us to confirm that a 2‐keto‐3‐deoxy‐D ‐gluconate aldolase from the archaeon Sulfolobus solfataricus demonstrates good activity for catalysis of the retro‐aldol cleavage of both these enantiomers to afford pyruvate and glycolaldehyde. The stereochemical promiscuity of this aldolase towards these enantiomeric aldol substrates confirms that this organism employs a metabolically promiscuous pathway to catabolise the C5‐sugars D ‐xylose and L ‐arabinose.  相似文献   

10.
The title compound, C14H16N4O4, adopts the anti conformation at the gly­cosylic bond [χ−117.1 (5)°]. The sugar pucker of the 2′‐deoxy­ribo­furan­osyl moiety is C2′‐endo–C3′‐exo, 2T3 (S‐type). The orientation of the exocyclic C4′—C5′ bond is +sc (gauche). The propynyl group is linear and coplanar with the nucleobase moiety. The structure of the compound is stabilized by several hydrogen bonds (N—H⋯O and O—H⋯O), leading to the formation of a multi‐layered network. The nucleobases, as well as the propynyl groups, are stacked. This stacking might cause the extraordinary stability of DNA duplexes containing this compound.  相似文献   

11.
12.
13.
Reported are preparations of acyclic derivatives of 1,2,4‐triazole‐5‐glycosidies 9 by cycloadditions of 1‐aza‐2‐azonia‐allene salts 3 to the nitrile group of D‐glucononitrile‐2,3,4,5,6‐pentaacetate 5 affording triazolium salts 8 , which with aqueous sodium hydogencarbonate are hydrolyzed to 9 . Deacetylation of compounds 9 produced the C‐glycosides 10 .  相似文献   

14.
In the monohydrate of 2‐amino‐8‐(2‐deoxy‐α‐d ‐erythro‐pento­furan­osyl)‐8H‐imidazo­[1,2‐a]­[1,3,5]­triazin‐4‐one, C10H13N5O4·H2O, denoted (I) or αZd, the conformation of the N‐gly­cosyl­ic bond is in the high‐anti range [χ = 87.5 (3)°]. The 2′‐deoxy­ribo­furan­ose moiety adopts a C2′‐endo,C3′‐exo(2′T3′) sugar puckering (S‐type sugar) and the conformation at the C4′—C5′ bond is ?sc (trans).  相似文献   

15.
The syntheses of N7‐glycosylated 9‐deazaguanine 1a as well as of its 9‐bromo and 9‐iodo derivatives 1b , c are described. The regioselective 9‐halogenation with N‐bromosuccinimide (NBS) and N‐iodosuccinimide (NIS) was accomplished at the protected nucleobase 4a (2‐{[(dimethylamino)methylidene]amino}‐3,5‐dihydro‐3‐[(pivaloyloxy)methyl]‐4H‐pyrrolo[3,2‐d]pyrimidin‐4‐one). Nucleobase‐anion glycosylation of 4a – c with 2‐deoxy‐3,5‐di‐O‐(p‐toluoyl)‐α‐D ‐erythro‐pentofuranosyl chloride ( 5 ) furnished the fully protected intermediates 6a – c (Scheme 2). They were deprotected with 0.01M NaOMe yielding the sugar‐deprotected derivatives 8a – c (Scheme 3). At higher concentrations (0.1M NaOMe), also the pivaloyloxymethyl group was removed to give 7a – c , while conc. aq. NH3 solution furnished the nucleosides 1a – c . In D2O, the sugar conformation was always biased towards S (67–61%).  相似文献   

16.
Conformational analyses of the P(3)‐axially and P(3)‐equatorially F‐substituted (±)‐cis‐ and (±)‐trans‐2,4‐dioxa‐7‐aza‐3‐phosphadecalin 3‐oxides (3‐fluoro‐2,4‐dioxa‐7‐aza‐3‐phosphabicyclo[4.4.0]decane 3‐oxides) were performed. The results are based on independent studies in both solution and the solid state by 1H‐ and 31P‐NMR experiments and computational and X‐ray crystallographic data. As expected, the axial epimers adopt neat double‐chair conformations in solution and in the crystal. Due to the anomeric effect of the electron withdrawing F‐substituent, the 2,4‐dioxa‐3‐phospha moiety in the equatorial epimers adopts a mixture of conformations in solution, mainly chair and twist‐boat; whereas a neat twist‐boat (trans‐isomer) and the unusual envelope conformation (cis‐isomer) were detected in the solid state. This is the first report of a straight visualization of these conformations and the impact of the anomeric effect in such systems.  相似文献   

17.
Starting from methyl 2,3‐O‐isopropylidene‐α‐D ‐mannofuranoside ( 5 ), methyl 6‐O‐benzyl‐2,3‐O‐isopropylidene‐α‐D ‐lyxo‐hexofuranosid‐5‐ulose ( 12 ) was prepared in three steps. The addition reaction of dimethyl phosphonate to 12 , followed by deoxygenation of 5‐OH group, provided the 5‐deoxy‐5‐dimethoxyphosphinyl‐α‐D ‐mannofuranoside derivative 15a and the β‐L ‐gulofuranoside isomer 15b . Reduction of 15a and 15b with sodium dihydrobis(2‐methoxyethoxy)aluminate, followed by the action of HCl and then H2O2, afforded the D ‐mannopyranose ( 17 ) and L ‐gulopyranose analog 21 , each having a phosphinyl group in the hemiacetal ring. These were converted to the corresponding 1,2,3,4,6‐penta‐O‐acetyl‐5‐methoxyphosphinyl derivatives 19 and 23 , respectively, structures and conformations (4C1 or 1C4, resp.) of which were established by 1H‐NMR spectroscopy.  相似文献   

18.
In the title compound, 3‐amino‐2‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐6‐methyl‐1,2,4‐triazin‐5(2H)‐one, C9H14N4O4, the conformation of the N‐glycosidic bond is high‐anti and the 2‐deoxy­ribo­furan­osyl moiety adopts a North sugar pucker (2T3). The orientation of the exocyclic C—C bond between the –CH2OH group and the five‐membered ring is ap (gauche, trans). The crystal packing is such that the nucleobases lie parallel to the ac plane; the planes are connected via hydrogen bonds involving the five‐membered ring.  相似文献   

19.
The title compound [systematic name: (1S,3S,4R,7S)‐3‐(4‐amino‐1H‐pyrazolo[3,4‐d]pyrimidin‐1‐yl)‐1‐hydroxymethyl‐2,5‐dioxabicyclo[2.2.1]heptan‐7‐ol], C11H13N5O4, belongs to a family of nucleosides with modifications in both the sugar and nucleobase moieties: these modifications are known to increase the thermodynamic stability of DNA and RNA duplexes. There are two symmetry‐independent molecules in the asymmetric unit that differ significantly in conformation, and both exhibit a high‐anti conformation about the N‐glycosidic bond, with χ torsion angles of −85.4 (3) and −87.4 (3)°. The sugar C atom attached to the nucleobase N atom is −0.201 (4) and 0.209 (4) Å from the 8‐aza‐7‐deazaadenine skeleton plane in the two molecules. The molecules are assembled into layers via hydrogen bonds and π–π stacking interactions between the modified nucleobases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号