首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Laplace transform method (LTM) is introduced to solve Burgers' equation. Because of the nonlinear term in Burgers' equation, one cannot directly apply the LTM. Increment linearization technique is introduced to deal with the situation. This is a key idea in this paper. The increment linearization technique is the following: In time level t, we divide the solution u(x, t) into two parts: u(x, tk) and w(x, t), tkttk+1, and obtain a time‐dependent linear partial differential equation (PDE) for w(x, t). For this PDE, the LTM is applied to eliminate time dependency. The subsequent boundary value problem is solved by rational collocation method on transformed Chebyshev points. To face the well‐known computational challenge represented by the numerical inversion of the Laplace transform, Talbot's method is applied, consisting of numerically integrating the Bromwich integral on a special contour by means of trapezoidal or midpoint rules. Numerical experiments illustrate that the present method is effective and competitive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a high‐order accurate compact finite difference method using the Hopf–Cole transformation is introduced for solving one‐dimensional Burgers' equation numerically. The stability and convergence analyses for the proposed method are given, and this method is shown to be unconditionally stable. To demonstrate efficiency, numerical results obtained by the proposed scheme are compared with the exact solutions and the results obtained by some other methods. The proposed method is second‐ and fourth‐order accurate in time and space, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
研究了三阶非线性发展方程的初边值问题的解。采用基于Sinc函数的微分求积法发展了线性化有理逼近方法。通常的配点法不适用于上述三阶问题的求解。本文把提出的方法用于求解KdV方程,取得了良好的效果。  相似文献   

4.
The MHD Falkner–Skan equation arises in the study of laminar boundary layers exhibiting similarity on the semi‐infinite domain. The proposed approach is equipped by the orthogonal Sinc functions that have perfect properties. This method solves the problem on the semi‐infinite domain without truncating it to a finite domain and transforming domain of the problem to a finite domain. In addition, the governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables, and then they are solved numerically by the Sinc‐collocation method. It is shown that the Sinc‐collocation method converges to the solution at an exponential rate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, numerical solution of partial differential equations (PDEs) is considered by multivariate padé approximations. We applied these method to two examples. First, PDE has been converted to power series by two‐dimensional differential transformation, Then the numerical solution of equation was put into multivariate padé series form. Thus, we obtained numerical solution of PDE. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
For Rayleigh‐Bénard‐Poiseuille flows, thermal stratification resulting from a wall‐normal temperature gradient together with an opposing gravitational field can lead to buoyancy‐driven instability. Moreover, for sufficiently large Reynolds numbers, viscosity‐driven instability can occur. Two higher‐order‐accurate methods based on the full and linearized Navier‐Stokes equations were developed for investigating the temporal stability of such flows. The new methods employ a spectral discretization in the homogeneous directions. In the wall‐normal direction, the convective and viscous terms are discretized with fifth‐order‐accurate biased and fourth‐order‐accurate central compact finite differences. A fourth‐order‐accurate explicit Runge‐Kutta method is employed for time integration. To validate the methods, the primary instability was investigated for different combinations of the Reynolds and Rayleigh number. The results from these primary stability investigations are consistent with linear stability theory results from the literature with respect to both the onset of the instability and the dependence of the temporal growth rate on the wave angle. For the cases with buoyancy‐driven instability, strong linear growth is observed for a broad range of spanwise wavenumbers. The largest growth rates are obtained for a wave angle of 90°. For the cases with viscosity‐driven instability, the linear growth rates are lower and the first mode to experience nonlinear growth is a higher harmonic with half the wavelength of the fundamental.  相似文献   

7.
In Stokes equations the velocity u and the pressure p are coupled together by the imcompressibility condition div u =0 which makes the equations difficult to solve numerically. In this paper, a method named Sinc‐collocation method with boundary treatment (SCMBT) is applied to the Stokes equations. The numerical results show that our method is of high accuracy, of good convergence with little computational effort. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, an approach to improve the application of the differential quadrature method for the solution of Navier–Stokes equations is presented. In using the conventional differential quadrature method for solving Navier–Stokes equations, difficulties such as boundary conditions' implementation, generation of an ill conditioned set of linear equations, large memory storage requirement to store data, and matrix coefficients, are usually encountered. Also, the solution of the generated set of equations takes a long running time and needs high computational efforts. An approach based on the point pressure–velocity iteration method, which is a variant of the Newton–Raphson relaxation technique, is presented to overcome these problems without losing accuracy. To verify its performance, four cases of two‐dimensional flows in single and staggered double lid‐driven cavity and flows past backward facing step and square cylinder, which have been often solved by researchers as benchmark solution, are simulated for different Reynolds numbers. The results are compared with existing solutions in the open literature. Very good agreement with low computational efforts of the approach is shown. It has been concluded that the method can be applied easily and is very time efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A lattice Boltzmann model for the fractional sub‐diffusion equation is presented. By using the Chapman–Enskog expansion and the multiscale time expansion, several higher‐order moments of equilibrium distribution functions and a series of partial differential equations in different time scales are obtained. Furthermore, the modified partial differential equation of the fractional sub‐diffusion equation with the second‐order truncation error is obtained. In the numerical simulations, comparisons between numerical results of the lattice Boltzmann models and exact solutions are given. The numerical results agree well with the classical ones. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A high‐order Padé alternating direction implicit (ADI) scheme is proposed for solving unsteady convection–diffusion problems. The scheme employs standard high‐order Padé approximations for spatial first and second derivatives in the convection‐diffusion equation. Linear multistep (LM) methods combined with the approximate factorization introduced by Beam and Warming (J. Comput. Phys. 1976; 22 : 87–110) are applied for the time integration. The approximate factorization imposes a second‐order temporal accuracy limitation on the ADI scheme independent of the accuracy of the LM method chosen for the time integration. To achieve a higher‐order temporal accuracy, we introduce a correction term that reduces the splitting error. The resulting scheme is carried out by repeatedly solving a series of pentadiagonal linear systems producing a computationally cost effective solver. The effects of the approximate factorization and the correction term on the stability of the scheme are examined. A modified wave number analysis is performed to examine the dispersive and dissipative properties of the scheme. In contrast to the HOC‐based schemes in which the phase and amplitude characteristics of a solution are altered by the variation of cell Reynolds number, the present scheme retains the characteristics of the modified wave numbers for spatial derivatives regardless of the magnitude of cell Reynolds number. The superiority of the proposed scheme compared with other high‐order ADI schemes for solving unsteady convection‐diffusion problems is discussed. A comparison of different time discretizations based on LM methods is given. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Introduction of a time‐accurate stabilized finite‐element approximation for the numerical investigation of weakly nonlinear and weakly dispersive water waves is presented in this paper. To make the time approximation match the order of accuracy of the spatial representation of the linear triangular elements by the Galerkin finite‐element method, the fourth‐order time integration of implicit multistage Padé method is used for the development of the numerical scheme. The streamline‐upwind Petrov–Galerkin (SUPG) method with crosswind diffusion is employed to stabilize the scheme and suppress the spurious oscillations, usually common in the numerical computation of convection‐dominated flow problems. The performance of numerical stabilization and accuracy is addressed. Treatments of various boundary conditions, including the open boundary conditions, the perfect reflecting boundary conditions along boundaries with irregular geometry, are also described. Numerical results showing the comparisons with analytical solutions, experimental measurements, and other published numerical results are presented and discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A new numerical method called high accuracy time and space transform method (TSTM) is introduced to solve the advection–diffusion equation in an unbounded domain. By a spatial transform, the advection–diffusion equation in the unbounded domain Rn is converted to one on the bounded domain [?1, 1]n, and the Laplace transform is applied to eliminate time dependency. The consequent boundary value problem is solved by collocation on Chebyshev points. To face the well‐known computational challenge represented by the numerical inversion of the Laplace transform, Talbot's method is applied, consisting of numerically integrating the Bromwich integral on a special contour by means of trapezoidal or midpoint rules. Numerical experiments illustrate that TSTM has exponential rate in time and space. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A numerical method is presented for solving the variable coefficient Poisson equation on a two‐dimensional domain in the presence of irregular interfaces across which both the variable coefficients and the solution itself may be discontinuous. The approach involves using piecewise cubic splines to represent the irregular interface, and applying this representation to calculate the volume and area of each cut cell. The fluxes across the cut‐cell faces and the interface faces are evaluated using a second‐order accurate scheme. The deferred correction approach is used, resulting in a computational stencil for the discretized Poisson equation on an irregular (complex) domain that is identical to that obtained on a regular (simple) domain. In consequence, a highly efficient multigrid solver based on the additive correction multigrid (ACM) method can be applied to solve the current discretized equation system. Several test cases (for which exact solutions to the variable coefficient Poisson equation with and without jump conditions are known) have been used to evaluate the new methodology for discretization on an irregular domain. The numerical solutions show that the new algorithm is second‐order accurate as claimed, even in the presence of jump conditions across an interface. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Accurate modeling of interfacial flows requires a realistic representation of interface topology. To reduce the computational effort from the complexity of the interface topological changes, the level set method is widely used for solving two‐phase flow problems. This paper presents an explicit characteristic‐based finite volume element method for solving the two‐dimensional level set equation. The method is applicable for the case of non‐divergence‐free velocity field. Accuracy and performance of the proposed method are evaluated via test cases with prescribed velocity fields on structured grids. By given a velocity field, the motion of interface in the normal direction and the mean curvature, examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Spatial discretization of transport and transformation processes in porous media requires techniques that handle general geometry, discontinuous coefficients and are locally mass conservative. Multi‐point flux approximation (MPFA) methods are such techniques, and we will here discuss some formulations on triangular grids with further application to the nonlinear Richards equation. The MPFA methods will be rewritten to mixed form to derive stability conditions and error estimates. Several MPFA versions will be shown, and the versions will be discussed with respect to convergence, symmetry and robustness when the grids are rough. It will be shown that the behavior may be quite different for challenging cases of skewness and roughness of the simulation grids. Further, we apply the MPFA discretization approach for the Richards equation and derive new error estimates without extra regularity requirements. The analysis will be accompanied by numerical results for grids that are relevant for practical simulation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
We introduce a stabilized finite element method for the 3D non‐Newtonian Navier–Stokes equations and a parallel domain decomposition method for solving the sparse system of nonlinear equations arising from the discretization. Non‐Newtonian flow problems are, generally speaking, more challenging than Newtonian flows because the nonlinearities are not only in the convection term but also in the viscosity term, which depends on the shear rate. Many good iterative methods and preconditioning techniques that work well for the Newtonian flows do not work well for the non‐Newtonian flows. We employ a Galerkin/least squares finite element method, with stabilization parameters adjusted to count the non‐Newtonian effect, to discretize the equations, and the resulting highly nonlinear system of equations is solved by a Newton–Krylov–Schwarz algorithm. In this study, we apply the proposed method to some inelastic power‐law fluid flows through the eccentric annuli with inner cylinder rotation and investigate the robustness of the method with respect to some physical parameters, including the power‐law index and the Reynolds number ratios. We then report the superlinear speedup achieved by the domain decomposition algorithm on a computer with up to 512 processors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A finite volume solver for the 2D depth‐integrated harmonic hyperbolic formulation of the mild‐slope equation for wave propagation is presented and discussed. The solver is implemented on unstructured triangular meshes and the solution methodology is based upon a Godunov‐type second‐order finite volume scheme, whereby the numerical fluxes are computed using Roe's flux function. The eigensystem of the mild‐slope equations is derived and used for the construction of Roe's matrix. A formulation that updates the unknown variables in time implicitly is presented, which produces a more accurate and reliable scheme than hitherto available. Boundary conditions for different types of boundaries are also derived. The agreement of the computed results with analytical results for a range of wave propagation/transformation problems is very good, and the model is found to be virtually paraxiality‐free. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
19.
A numerical method for solving three‐dimensional free surface flows is presented. The technique is an extension of the GENSMAC code for calculating free surface flows in two dimensions. As in GENSMAC, the full Navier–Stokes equations are solved by a finite difference method; the fluid surface is represented by a piecewise linear surface composed of quadrilaterals and triangles containing marker particles on their vertices; the stress conditions on the free surface are accurately imposed; the conjugate gradient method is employed for solving the discrete Poisson equation arising from a velocity update; and an automatic time step routine is used for calculating the time step at every cycle. A program implementing these features has been interfaced with a solid modelling routine defining the flow domain. A user‐friendly input data file is employed to allow almost any arbitrary three‐dimensional shape to be described. The visualization of the results is performed using computer graphic structures such as phong shade, flat and parallel surfaces. Results demonstrating the applicability of this new technique for solving complex free surface flows, such as cavity filling and jet buckling, are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
We investigate the effectiveness of the partition‐of‐unity method (PUM) for convection–diffusion problems. We show that for the linear diffusion equation, an exponential enrichment function based on an approximation of the analytic solution leads to improved accuracy compared to the standard finite‐element method. It is illustrated that this approach can be more efficient than using polynomial enrichment to increase the order of the scheme. We argue that the PUM enrichment, can be interpreted as a subgrid‐scale model in a multiscale framework, and that the choice of enrichment function has consequences for the stabilization properties of the method. The exponential enrichment is shown to function as a near optimal subgrid‐scale model for linear convection. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号