首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The title compounds were prepared by aldol reaction of anisaldehyde and the respective N,N‐dibenzyl glycinates. Deprotection of the nitrogen atom with Pearlman’s catalyst delivered the unprotected β‐hydroxytyrosine esters, which were further N‐protected as N,N‐phthaloyl (Phth) and N‐fluorenylmethylcarbonyloxy (Fmoc) derivatives. The Friedel–Crafts reaction with various arenes was studied employing these alcohols as electrophiles. It turned out that the facial diastereoselectivitiy depends on the nitrogen protecting group and on the ester group. The unprotected substrates (NH2) gave preferentially syn‐products but the anti‐selectivity increased when going from NHFmoc over NPhth to NBn2. If the ester substituent was varied the syn‐preference increased in the order Me <Et <iPr. The reactions were shown to be fully stereoconvergent and proceeded under kinetic product control. A model is suggested to explain the facial diastereoselectivity based on a conformationally locked benzylic cation intermediate. The reactions are preparatively useful for the N‐unprotected isopropyl ester, which gave Friedel–Crafts alkylation products with good syn‐selectivity (anti/syn=21:79 to 7:93), and for the N,N‐dibenzyl‐protected methyl ester, which led preferentially to anti‐products (anti/syn=80:20 to >95:5). Upon acetylation of the latter compound to the respective acetate, Bi(OTf)3‐catalyzed alkylation reactions became possible, in which silyl enol ethers served as nucleophiles. The respective alkylation products were obtained in high yield and with excellent anti‐selectivitiy (anti/syn≥95:5).  相似文献   

2.
A concise asymmetric (>99:1 e.r.) total synthesis of (+)‐anti‐ and (?)‐syn‐mefloquine hydrochloride from a common intermediate is described. The key asymmetric transformation is a Sharpless dihydroxylation of an olefin that is accessed in three steps from commercially available materials. The Sharpless‐derived diol is converted into either a trans or cis epoxide, and these are subsequently converted into (+)‐anti‐ and (?)‐syn‐mefloquine, respectively. The synthetic (+)‐anti‐ and (?)‐syn‐mefloquine samples were derivatized with (S)‐(+)‐mandelic acid tert‐butyldimethylsilyl ether, and a crystal structure of each derivative was obtained. These are the first X‐ray structures for mefloquine derivatives that were obtained by coupling to a known chiral, nonracemic compound, and provide definitive confirmation of the absolute stereochemistry of (+)‐anti‐ as well as (?)‐syn‐mefloquine.  相似文献   

3.
β,β‐(1,4‐Dithiino)subporphyrin dimers 7‐syn and 7‐anti were synthesized by the nucleophilic aromatic substitution reaction of 2‐bromo‐3‐(4‐methoxyphenylsulfonyl)subporphyrin 4 with 2,3‐dimercaptosubporphyrin 5 under basic conditions followed by axial arylation. Additions of C60 or C70 to a dilute solution of 7‐anti (ca. 10?6 m ) in toluene did not cause appreciable UV/Vis spectral changes, while similar additions to a concentrated solution (ca. 10?3 m ) resulted in precipitation of complexes. In contrast, dimer 7‐syn captured C60 and C70 in different complexation stoichiometries in toluene; a 1:1 manner and a 2:1 manner, respectively, with large association constants; Ka=(1.9±0.2)×106 m ?1 for C60@ 7‐syn , and K1=(1.6±0.5)×106 and K2=(1.8±0.9)×105 m ?1 for C70@( 7‐syn )2. These association constants are the largest for fullerenes‐capture by bowl‐shaped molecules reported so far. The structures of C60@ 7‐anti , C70@ 7‐anti , C60@ 7‐syn , and C70@ 7‐syn have been determined by single‐crystal X‐ray diffraction analysis.  相似文献   

4.
Flash‐vacuum pyrolysis of the quadricyclane derivative 5a at 350° afforded the oxabishomocubane 9a , whose structure was confirmed by an INADEQUATE‐NMR experiment. A computational investigation of the mechanism of this unexpected reaction by DFT and CASPT2‐SCF methods indicated that the reaction path of lowest energy involves a quadricyclane/oxaquadricyclane ( 5 / 12 ) isomerization, followed by a well‐established cycloreversion of 12 to the carbonyl ylide 16 , which subsequently undergoes an intramolecular 1,3‐dipolar cycloadditon to 9 . The lowest‐energy path of the thermal isomerization of the syn‐quadricyclane 6c is its conversion to the syn ‐ sesquinorbornatriene 8c . The corresponding anti‐isomer 5c , however, shows the capability of a degenerate quadricyclane/quadricyclane rearrangement.  相似文献   

5.
The synthesis, structure, and solution‐state behavior of clothespin‐shaped binuclear trans‐bis(β‐iminoaryloxy)palladium(II) complexes doubly linked with pentamethylene spacers are described. Achiral syn and racemic anti isomers of complexes 1 – 3 were prepared by treating Pd(OAc)2 with the corresponding N,N′‐bis(β‐hydroxyarylmethylene)‐1,5‐pentanediamine and then subjecting the mixture to chromatographic separation. Optically pure (100 % ee) complexes, (+)‐anti‐ 1 , (+)‐anti‐ 2 , and (+)‐anti‐ 3 , were obtained from the racemic mixture by employing a preparative HPLC system with a chiral column. The trans coordination and clothespin‐shaped structures with syn and anti conformations of these complexes have been unequivocally established by X‐ray diffraction studies. 1H NMR analysis showed that (±)‐anti‐ 1 , (±)‐anti‐ 2 , syn‐ 2 , and (±)‐anti‐ 3 display a flapping motion by consecutive stacking association/dissociation between cofacial coordination planes in [D8]toluene, whereas syn‐ 1 and syn‐ 3 are static under the same conditions. The activation parameters for the flapping motion (ΔH and ΔS) were determined from variable‐temperature NMR analyses as 50.4 kJ mol?1 and 60.1 J mol?1 K?1 for (±)‐anti‐ 1 , 31.0 kJ mol?1 and ?22.7 J mol?1 K?1 for (±)‐anti‐ 2 , 29.6 kJ mol?1 and ?57.7 J mol?1 K?1 for syn‐ 2 , and 35.0 kJ mol?1 and 0.5 J mol?1 K?1 for (±)‐anti‐ 3 , respectively. The molecular structure and kinetic parameters demonstrate that all of the anti complexes flap with a twisting motion in [D8]toluene, although (±)‐anti‐ 1 bearing dilated Z‐shaped blades moves more dynamically than I‐shaped (±)‐anti‐ 2 or the smaller (±)‐anti‐ 3 . Highly symmetrical syn‐ 2 displays a much more static flapping motion, that is, in a see‐saw‐like manner. In CDCl3, (±)‐anti‐ 1 exhibits an extraordinary upfield shift of the 1H NMR signals with increasing concentration, whereas solutions of (+)‐anti‐ 1 and the other syn/anti analogues 2 and 3 exhibit negligible or slight changes in the chemical shifts under the same conditions, which indicates that anti‐ 1 undergoes a specific heterochiral association in the solution state. Equilibrium constants for the dimerizations of (±)‐ and (+)‐anti‐ 1 in CDCl3 at 293 K were estimated by curve‐fitting analysis of the 1H NMR chemical shift dependences on concentration as 26 M ?1 [KD(racemic)] and 3.2 M ?1 [KD(homo)], respectively. The heterochiral association constant [KD(hetero)] was estimated as 98 M ?1, based on the relationship KD(racemic)=1/2 KD(homo)+1/4 KD(hetero). An inward stacking motif of interpenetrative dimer association is postulated as the mechanistic rationale for this rare case of heterochiral association.  相似文献   

6.
An expedient concise total synthesis of (+)‐7‐epigoniodiol, (?)‐8‐epigoniodiol, and (+)‐9‐deoxygoniopypyrone is accomplished. The key transformations include a catalytic hydroxylation and base‐mediated N‐(acetyl)oxazolidinone addition reactions, which could set the consecutive OH motif that is either syn,syn or syn,anti with high diastereoselectivity. Moreover, this approach envisioned to facilitate the synthesis of other representatives of the family with structural and stereochemical variation.  相似文献   

7.
We report a new polymorph of (1E,4E)‐1,5‐bis(4‐fluorophenyl)penta‐1,4‐dien‐3‐one, C17H12F2O. Contrary to the precedent literature polymorph with Z′ = 3, our polymorph has one half molecule in the asymmetric unit disordered over two 50% occupancy sites. Each site corresponds to one conformation around the single bond vicinal to the carbonyl group (so‐called anti or syn). The other half of the bischalcone is generated by twofold rotation symmetry, giving rise to two half‐occupied and overlapping molecules presenting both anti and syn conformations in their open chain. Such a disorder allows for distinct patterns of intermolecular C—H…O contacts involving the carbonyl and anti‐oriented β‐C—H groups, which is reflected in three 13C NMR chemical shifts for the carbonyl C atom. Here, we have also assessed the cytotoxicity of three symmetric bischalcones through their in vitro antitumour potential against three cancer cell lines. Cytotoxicity assays revealed that this biological property increases as halogen electronegativity increases.  相似文献   

8.
The novel title polymeric copper(II) complex, {Na2[Cu3‐(CHO2)8]}n, consists of sodium cations and infinite anionic chains, in which neutral dinuclear [Cu2(O2CH)4] moieties alternate with dianionic [Cu(O2CH)4]2− units. Both metal‐containing moieties are located on crystallographic inversion centers. The synsyn bridging configuration between the mononuclear and dinuclear components yields a structure that is significantly more dense than the structures previously reported for mononuclear–dinuclear copper(II) carboxyl­ates with synanti or anti–anti bridging modes.  相似文献   

9.
Thermal reactions of hitherto α‐(3‐pyridyl)‐N‐phenylnitrone ( 1 ) with mono‐substituted electron‐rich and electron‐neutral dipolarophiles are regio‐, and stereo‐selective (exo‐selective), controlled by LUMO ‐ dipole ‐ HOMO‐ dipolarophile interaction, and furnish syn‐5‐substituted‐3‐(3‐pyridyl)‐isoxazolidines ( 5 ) in high yields. With electron deficient dipolarophiles such as acrylonitrile there is observed a loss of regioselectivity as well as stereoselectivity and the regioselectivity is reversed in reactions with methyl vinyl ketone and methyl acrylate, due to intervention of HOMO‐dipole ‐ LUMO‐dipolarophile interaction, affording 4‐substi‐tuted‐3‐(3‐pyridyl)‐isoxazolidines ( 7 ) as major products. Reactions of nitrone ( 1 ) with disubstituted dipolarophiles such as methyl methacrylate and ethyl coronate furnish methyl syn‐5‐methy‐3‐pyridyl‐1‐phenyl‐isoxazolidine‐5‐carboxylate ( 8 ) and ethyl anti‐5‐methy‐3‐pyridyl‐1‐phenyl‐isoxazolidine‐4‐carboxylate ( 10 ), respectively, in high yields. Reaction with N‐Phenylmaleimide affords novel isoxazolidino‐pyrro‐lidinediones bearing a 3‐pyridyl moiety ( 11, 12 ). A mechanistic rationalization of the obtained results in terms of electronic, steric and secondary interactions is proffered.  相似文献   

10.
Asymmetric nucleophilic monofluoroalkylation of a broad range of aldehydes with an α‐fluoro‐γ‐sulfinylbenzyl carbanion takes place with complete control of the facial selectivity at the carbanion and good to high anti‐diastereoselectivity to give easily separable mixtures of two optically pure 1,2‐fluorohydrin derivatives (up to 24:1 anti/syn). Separation and removal of the p‐tolylsulfinyl group with tBuLi provides enantiomerically pure anti‐1,2‐disubstituted‐1,2‐fluorohydrins, whereas α‐fluorobenzylketones can be obtained by desulfinylation of the mixture followed by pyridinium chlorochromate oxidation (one‐pot process).  相似文献   

11.
The novel title tetraselenacalix[4]arene, C16H8S4Se4 or [(C4H2S)Se]4, has a centrosymmetric cyclic molecular structure with approximate C2h molecular symmetry. The four thienyl rings are joined together by Se bridges and exhibit a synsynantianti arrangement around the mol­ecule. The lattice consists of skewed stacks of mol­ecules, with chalcogen–chalcogen close contacts binding the stacks together, forming a two‐dimensional network of mol­ecules.  相似文献   

12.
Reaction of [M(NO)Cl3(NCMe)2] (M=Mo, W) with (iPr2PCH2CH2)2PPh (etpip) at room temperature afforded the syn/anti‐[M(NO)Cl3(mer‐etpip)] complexes (M=Mo, a ; W, b ; 3 a,b (syn,anti); syn and anti refer to the relative position of Ph(etpip) and NO). Reduction of 3 a,b (syn,anti) produced [M(NO)Cl2(mer‐etpip)] ( 4 a,b (syn)), [M(NO)Cl(NCMe)(mer‐etpip)] ( 5 a,b (syn,anti)), and [M(NO)Cl(η2‐ethylene)(mer‐etpip)] ( 6 a,b (syn,anti)) complexes. The hydrides [M(NO)H(η2‐ethylene)(mer‐etpip)] ( 7 a,b (syn,anti)) were obtained from 6 a,b (syn,anti) using NaHBEt3 (75 °C, THF) or LiBH4 (80 °C, Et3N), respectively. 7 a,b (syn,anti) were probed in olefin hydrogenations in the absence or presence of a hydrosilane/B(C6F5)3 mixture. The 7 a,b (syn,anti)/Et3SiH/B(C6F5)3 co‐catalytic systems were highly active in various olefin hydrogenations (60 bar H2, 140 °C), with maximum TOFs of 5250 h?1 ( 7 a (syn,anti)) and 8200 h?1 ( 7 b (syn,anti)) for 1‐hexene hydrogenation. The Et3SiH/(B(C6F5)3 co‐catalyst is anticipated to generate a [Et3Si]+ cation attaching to the ONO atom. This facilitates NO bending and accelerates catalysis by providing a vacant site. Inverse DKIE effects were observed for the 7 a (syn,anti)/Et3SiH/(B(C6F5)3 (kH/kD=0.55) and the 7 b (syn,anti)/Et3SiH/(B(C6F5)3 (kH/kD=0.65) co‐catalytic mixtures (20 bar H2/D2, 140 °C).  相似文献   

13.
Studies of 2‐(1H‐pyrazol‐5‐yl)pyridine (PPP) and its derivatives 2‐(4‐methyl‐1H‐pyrazol‐5‐yl)pyridine (MPP) and 2‐(3‐bromo‐1H‐pyrazol‐5‐yl)pyridine (BPP) by stationary and time‐resolved UV/Vis spectroscopic methods, and quantum chemical computations show that this class of compounds provides a rare example of molecules that exhibit three types of photoreactions: 1) excited‐state intramolecular proton transfer (ESIPT) in the syn form of MPP, 2) excited‐state intermolecular double‐proton transfer (ESDPT) in the dimers of PPP in nonpolar media, as well as 3) solvent‐assisted double‐proton transfer in hydrogen‐bonded 1:1 complexes of PPP and MPP with alcoholic partners. The excited‐state processes are manifested by the appearance of a dual luminescence and a bimodal irreversible kinetic coupling of the two fluorescence bands. Ground‐state syn–anti equilibria are detected and discussed. The fraction of the higher‐energy anti form varies for different derivatives and is strongly dependent on the solvent polarity and hydrogen‐bond donor or acceptor abilities.  相似文献   

14.
In the tridentate ligand 2,6‐bis(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)pyridine, C23H19N7, both sets of triazole N atoms are anti with respect to the pyridine N atom, while in the copper complex aqua[2,6‐bis(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)pyridine](pyridine)(tetrafluoroborato)copper(II) tetrafluoroborate, [Cu(BF4)(C5H5N)(C23H19N7)(H2O)]BF4, the triazole N atoms are in the synsyn conformation. The coordination of the CuII atom is distorted octahedral. The ligand structure is stabilized through intermolecular C—H...N interactions, while the crystal structure of the Cu complex is stabilized through water‐ and BF4‐mediated hydrogen bonds. Photoluminiscence studies of the ligand and complex show that the ligand is fluorescent due to triazole–pyridine conjugation, but that the fluorescence is quenched on complexation.  相似文献   

15.
The stereoselective syntheses of 7,8,9‐trideoxypeloruside A ( 4 ) and a monocyclic peloruside A analogue lacking the entire tetrahydropyran moiety ( 3 ) are described. The syntheses proceeded through the PMB‐ether of an ω‐hydroxy β‐keto aldehyde as a common intermediate which was elaborated into a pair of diastereomeric 1,3‐syn and ‐anti diols by stereoselective Duthaler–Hafner allylations and subsequent 1,3‐syn or anti reduction. One of these isomers was further converted into a tetrahydropyran derivative in a high‐yielding Prins reaction, to provide the precursor for bicyclic analogue 4 . Downstream steps for both syntheses included the substrate‐controlled addition of a vinyl lithium intermediate to an aldehyde, thus connecting the peloruside side chain to C15 (C13) of the macrocyclic core structure in a fully stereoselective fashion. In the case of monocyclic 3 macrocyclization was based on ring‐closing olefin metathesis (RCM), while bicyclic 4 was cyclized through Yamaguchi‐type macrolactonization. The macrolactonization step was surprisingly difficult and was accompanied by extensive cyclic dimer formation. Peloruside A analogues 3 and 4 inhibited the proliferation of human cancer cell lines in vitro with micromolar and sub‐micromolar IC50 values, respectively. The higher potency of 4 highlights the importance of the bicyclic core structure of peloruside A for nM biological activity.  相似文献   

16.
The NdIII coordination compounds [Nd(4‐pytza)3(H2O)2] · 2H2O ( 1 ) and [Nd(4‐pytza)2(H2O)4]Cl · 2H2O ( 2 ) [H4‐pytza = 5‐(4‐pyridyl)tetrazole‐2‐acetic acid] were synthesized by reactions of K4‐pytza and NdCl3 · 6H2O at different pH values. Single crystal X‐ray diffraction analysis reveals that 4‐pytza ligands in 1 in a μ1,3‐COO synsyn or μ1,1,3‐COO bridging mode coordinate to two central NdIII atoms to display a dinuclear unit, which is connected by one of these 4‐pytza ligands acting in end‐to‐end bridging mode to form a 1D ladder‐like chain. Different from 1 , each 4‐pytza in 2 with a μ1,3‐COO synanti bridging mode coordinates to two NdIII atoms to display a 1D zigzag chain. Furthermore, the luminescence properties of 1 and 2 were investigated at room temperature in the solid state.  相似文献   

17.
Two isomeric pyridine‐substituted norbornenedicarboximide derivatives, namely N‐(pyridin‐2‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (I), and N‐(pyridin‐3‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (II), both C14H12N2O4, have been crystallized and their structures unequivocally determined by single‐crystal X‐ray diffraction. The molecules consist of norbornene moieties fused to a dicarboximide ring substituted at the N atom by either pyridin‐2‐yl or pyridin‐3‐yl in an anti configuration with respect to the double bond, thus affording exo isomers. In both compounds, the asymmetric unit consists of two independent molecules (Z′ = 2). In compound (I), the pyridine rings of the two independent molecules adopt different conformations, i.e. syn and anti, with respect to the methylene bridge. The intermolecular contacts of (I) are dominated by C—H...O interactions. In contrast, in compound (II), the pyridine rings of both molecules have an anti conformation and the two independent molecules are linked by carbonyl–carbonyl interactions, as well as by C—H...O and C—H...N contacts.  相似文献   

18.
The self‐assembly of ditopic bis(1H‐imidazol‐1‐yl)benzene ligands ( L H) and the complex (2,2′‐bipyridyl‐κ2N,N′)bis(nitrato‐κO)palladium(II) affords the supramolecular coordination complex tris[μ‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]‐triangulo‐tris[(2,2′‐bipyridyl‐κ2N,N′)palladium(II)] hexakis(hexafluoridophosphate) acetonitrile heptasolvate, [Pd3(C10H8N2)3(C12H10N4)3](PF6)6·7CH3CN, 2 . The structure of 2 was characterized in acetonitrile‐d3 by 1H/13C NMR spectroscopy and a DOSY experiment. The trimeric nature of supramolecular coordination complex 2 in solution was ascertained by cold spray ionization mass spectrometry (CSI–MS) and confirmed in the solid state by X‐ray structure analysis. The asymmetric unit of 2 comprises the trimetallic Pd complex, six PF6? counter‐ions and seven acetonitrile solvent molecules. Moreover, there is one cavity within the unit cell which could contain diethyl ether solvent molecules, as suggested by the crystallization process. The packing is stabilized by weak inter‐ and intramolecular C—H…N and C—H…F interactions. Interestingly, the crystal structure displays two distinct conformations for the L H ligand (i.e. syn and anti), with an all‐syn‐[Pd] coordination mode. This result is in contrast to the solution behaviour, where multiple structures with syn/anti‐ L H and syn/anti‐[Pd] are a priori possible and expected to be in rapid equilibrium.  相似文献   

19.
The successful application of imidazole‐modified ketones in asymmetric anti‐selective Michael reactions with trans‐β‐nitroalkenes is presented by employing a newly developed 3‐bromothiophene‐modified chiral diamine ligand. The corresponding conjugate adduct was submitted to further transformations with Grignard reagents to solve the problem of α‐site selectivity of simple linear ketones. Additionally, the syn‐selective product was obtained by treating the anti‐selective adduct with a simple base. In this way, the site‐specific products for both diastereomers in the asymmetric conjugate addition of simple ketones to nitroalkenes can be obtained.  相似文献   

20.
1‐(β‐d ‐Erythrofuranosyl)cytidine, C8H11N3O4, (I), a derivative of β‐cytidine, (II), lacks an exocyclic hydroxy­methyl (–CH2OH) substituent at C4′ and crystallizes in a global conformation different from that observed for (II). In (I), the β‐d ‐erythrofuranosyl ring assumes an E3 conformation (C3′‐exo; S, i.e. south), and the N‐glycoside bond conformation is syn. In contrast, (II) contains a β‐d ‐ribofuranosyl ring in a 3T2 conformation (N, i.e. north) and an anti‐N‐glycoside linkage. These crystallographic properties mimic those found in aqueous solution by NMR with respect to furan­ose conformation. Removal of the –CH2OH group thus affects the global conformation of the aldofuranosyl ring. These results provide further support for S/syn–anti and N/anti correlations in pyrimidine nucleosides. The crystal structure of (I) was determined at 200 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号