首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2006,18(22):2163-2167
Poly (N‐vinyl‐2‐pyrrolidone) (PVP)‐capped CdS quantum dots (QCdS‐PVP) was synthesized with CdCl2 and Na2S in the presence of PVP. QCdS‐PVP has been used for the immobilization and stabilization of the acetylcholinesterase (AChE). The electrocatalytic activity of QCdS‐PVP leads to a greatly improved electrochemical detection of the enzymatically generated thiocholine product, and higher sensitivity and stability. The GCE/QCdS‐PVP/AChE biosensor was used for the detection of organophosphate pesticides (OPs), such as trichlorfon. The sensor performance, including pH and inhibition time, was optimized with respect to operating conditions. Under the optimal conditions, the biosensor was used to measure as low as 12 ppb trichlorfon with a 5‐min inhibition time.  相似文献   

2.
We successfully demonstrated microliter (μL) volume determination of Mercury (Hg) using an in‐built screen‐printed three electrodes containing partially crosslinked poly(4‐vinlylpyridine) (designated as pcPVP) modified carbon‐working, carbon‐counter, and Ag+‐quasireference electrodes (SPE/pcPVP) in a pH 4 acetate buffer solution with 2 M KCl by using the square wave anodic stripping voltammetric (SWASV) technique. Instrumental and solution phase conditions were systematically optimized. Experiments were carried out by simply placing a 500 μL‐droplet of Hg containing real sample mixed with the base electrolyte on the SPE/pcPVP surface. The SPE/Ag+ quasi‐reference system shifted the Hg‐SWASV detection potential ca. 250 mV positive, but the quantitative current values were appreciably similar to that of a standard Ag/AgCl reference electrode. Under optimal condition, the calibration graph is linear in the window of 100–1000 ppb of the Hg droplet system with a detection limit of 69.5 ppb (S/N=3). Finally real sample assays were demonstrated for prohibited cosmetic Hg containing skin‐lightening agents in parallel with ICP‐OES measurements.  相似文献   

3.
A simple, rapid and environment‐friendly technique of single‐drop liquid‐phase microextraction has been developed for the determination of sulfonamides in environmental water. Several important parameters including stirring rate, extraction solvent, extraction pH, salinity and extraction time were optimized to maximize the extract efficiency. Extraction solvent 1‐octyl‐3‐methylimidazolium hexafluorophosphate [C8MIM][PF6] ionic liquid showed better extraction efficiency than 1‐butyl‐3‐methylimidazolium hexafluorophosphate [C4MIM][PF6] and 1‐octanol. The optimum experimental conditions were: pH, 4.5; sodium chloride content, 36% w/v; extraction time, 20 min. This method provided low detection limits (0.5–1 ng/mL), good repeatability (the RSD ranging from 4.2 to 9.9%, n=5) and wide linear range (1–1500 ng/mL), with determination coefficients (r2) higher than 0.9989 for all the target compounds. Real sample analysis showed relative recoveries between 63.5 and 115.8% for all the target compounds.  相似文献   

4.
Magnetic particles modified with a dicationic polymeric ionic liquid are described as a new adsorbent in magnetic solid‐phase extraction. They were obtained through the copolymerization of a 1,8‐di(3‐vinylimidazolium)octane‐based ionic liquid with vinyl‐modified SiO2@Fe3O4, and were characterized by FTIR spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. The modified magnetic particles are effective in the extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons. Also, they can provide different extraction performance for the selected analytes including fenitrothion, parathion, fenthion, phoxim, phenanthrene, and fluoranthene, where the extraction efficiency is found to be in agreement with the hydrophobicity of analytes. Various factors influencing the extraction efficiency, such as, the amount of adsorbent, extraction, and desorption time, and type and volume of the desorption solvent, were optimized. Under the optimized conditions, a good linearity ranging from 1–100 μg/L is obtained for all analytes, except for parathion (2–200 μg/L), where the correlation coefficients varied from 0.9960 to 0.9998. The limits of detection are 0.2–0.8 μg/L, and intraday and interday relative standard deviations are 1.7–7.4% (n = 5) and 3.8–8.0% (n = 3), respectively. The magnetic solid‐phase extraction combined with high‐performance liquid chromatography can be applied for the detection of trace targets in real water samples with satisfactory relative recoveries and relative standard deviations.  相似文献   

5.
One-dimensional Ni/Au/PPy-COOH nanowires with multiple segments were synthesized in this study. Smooth surfaces and magnetic properties of nanowires were investigated by scanning transmission electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), and Electron Spin Resonance (ESR) techniques. The nanowires were used to modify the screen-printed electrode surface and as a micro-environment for Trametes versicolor laccase. The ability of this enzyme biosensor to detect dopamine change in human biological samples was demonstrated by a wide linear range (0.01–50 μM) and a low LOD (2.265 nM). In addition, the biosensor exhibited excellent selectivity allowing the detection of dopamine in the presence of ascorbic acid, uric acid, L-Cys, serotonin, and glucose, with high sensitivity of reduction currents obtained at −0.2 V (vs. Ag/AgCl). The proposed biosensor allowed the detection of dopamine in commercial serum and artificial urine with recovery values close to 100 %. It also demonstrated reproducibility, reusability, and long-term storage stability. The sensitivity, Kmapp, and Imax values of the biosensor were determined as 2.05 μM and 1.03 μA, respectively. The LAC-Ni/Au/PPy-COOH/NAF/SPE biosensor is a reliable design for detecting dopamine with a wide linear range.  相似文献   

6.
A screen‐printed silver strip with a built‐in three‐in‐one electrode (SPAgE) configuration of Ag‐working, Ag‐counter and Ag/AgxO (silver oxides) pseudoreference electrodes has been developed for sensitive and selective electrochemical flow injection analysis (FIA) of aluminum chlorohydrate (ACH) present in antiperspirants, through the free Cl? ion liberated from ACH in aqueous medium, as a redox signal at Ag‐working electrode in pH 6 phosphate buffer solution (PBS). The solution phase and instrumental parameters were systematically optimized. The calibration graph was linear in the window 1–200 ppm concentration of ACH and the lowest detection limit (S/N=3) was 295 ppb with a slope of 0.0989 μA/ppm and regression coefficient of 0.998. Calculated relative standard deviation (RSD) values for the detection of 5 and 50 ppm ACH by this method are 2.21 % and 2.16 %, respectively. Four different antiperspirant deodorants real samples with and without ACH content were successfully analyzed and the detected values obtained were found to be in good agreement with the product labeled values.  相似文献   

7.
A simple, rapid and sensitive CE method coupled with electrochemiluminescence (ECL) detection for direct analysis of ibandronate (IBAN) has been developed. Using a buffer solution of 20 mM sodium phosphate (pH 9.0) and a voltage of 13.5 kV, separation of IBAN in a 30‐cm length capillary was achieved in 3 min. ECL detection was performed with an indium tin oxide working electrode bias at 1.6 V (versus a Pt wire reference) in a 200‐mM sodium phosphate buffer (pH 8.0) containing 3.5 mM Ru(bpy)32+ (where bpy=2,2′‐bipyridyl). Derivatization of IBAN prior to CE‐ECL analysis was not needed. Linear correlation (r=0.9992, n=7) between ECL intensity and analyte concentration was obtained in the range of 0.25–50 μM IBAN. The LOD of IBAN in water was 0.08 μM. The developed method was applied to the analysis of IBAN in a drug formulation and human urine sample. SPE using magnetic Fe3O4@Al2O3 nanoparticles as the extraction phase was employed to pretreat the urine sample before CE‐ECL analysis. The linear range was 0.2–12.0 μM IBAN in human urine (r=0.9974, n=6). The LOD of IBAN in urine was 0.06 μM. Total analysis time including sample preparation was <1 h.  相似文献   

8.
A novel biosensor was fabricated based on hemoglobin (Hb) immobilized onto cuprous sulfide (Cu2S) nanorods/nafion nanocomposite film for the detection of polyphenols in the presence of hydrogen peroxide (H2O2). The nanostructured inorganic–organic hybrid material formed by Cu2S nanorods and nafion provided a biocompatible microenvironment for Hb and increased the sensitivity for polyphenols detection. The modified electrodes were characterized by electrochemical impedance spectroscopy and linear sweep voltammetry. Parameters such as pH, H2O2 concentration, and the applied potential were optimized. Under optimum conditions, the biosensor gave linear response ranges of 7.0–110, 0.6–10, and 8–100 μM for catechol, hydroquinone, and resorcin, with the detection limits of 0.5, 0.03, and 0.6 μM (S/N?=?3), respectively. The developed biosensor exhibited a short response time within only 8 s with good stability and reproducibility. Such a novel biosensor showed great promise for rapid, simple analysis of polyphenols contents in real samples.  相似文献   

9.
Copper containing nitrite reductase (Cu‐NiR) and viologen‐modified sulfonated polyaminopropylsiloxane (PAPS‐SO3H‐V) were co‐immobilized on glassy carbon electrode (GCE) by hydrophilic polyurethane (HPU) drop‐coating, and the electrode was tested as a reagentless electrochemical biosensor for nitrite detection. The newly synthesized PAPS‐SO3H‐V as an electron transfer (ET) mediator between electrode and NiR was effective, and could be effectively immobilized in HPU membrane. The NiR and PAPS‐SO3H‐V co‐immobilized GCE used as a nitrite biosensor showed the following performance factors: sensitivity=12.0 nA μM?1, limit of detection (LOD)=60 nM (S/N=3), linear response range=0–18 μM (r2=0.996) and response time (t90%)=60 s, respectively. Lineweaver–Burk plot shows that apparent Michaelis–Menten constant (K is 101 μM. Storage stability of the sensor is 51 days (80% of initial activity) in condition of storing in ambient air at room temperature. The sensor showed a relative standard deviation (RSD) of 3.2% (n=5) even in condition of injection of 1 μM nitrite. Interference study showed that common anions in water sample such as chlorate, chloride, sulfate and sulfite do not interfere with the nitrite detection. However, nitrate interfered with a relative sensitivity of 80% due to inherent character of the enzyme used.  相似文献   

10.
Electroanalytical methods can be used for the reliable detection of the toxic heavy metal lead in drinking water samples. Inkjet printed electrodes have potential for the rapid and affordable assessment of drinking water. Researchers have shown the electrochemical sensing applicability of inkjet printed electrodes. In this work, Pb2+ was detected using an inkjet printed multi‐walled carbon nanotube (IJP‐MW‐CNT) electrode with silver tracks printed underneath. The silver tracks provide the sensor with the conductivity needed for sensitive measurements. MW‐CNT were dispersed in water using bile salts as a surfactant to prepare the ink. The IJP‐MW‐CNT electrode was used as the working electrode with a platinum wire and Ag/AgCl as auxiliary and reference electrode, respectively. The electrodes performance was optimized in 0.1 M acetate buffer (pH=4.3) and had two linear ranges of 5 to 20 ppb (R2=0.99) with a sensitivity of 38 nA/ppb and 20 to 50 ppb (R2=0.98) with a sensitivity of 15 nA/ppb and a limit of detection (LOD) of 1.0 ppb for Pb2+. The analytical applicability of electrode was determined by constructing a calibration curve in an unaltered drinking water sample (i. e.) Cincinnati tap water with two linear ranges of 15 to 40 ppb (R2=0.99) with a sensitivity of 1.5 nA/ppb and 40 to 70 ppb (R2=0.99) with a sensitivity of 3.5 nA/ppb and a LOD of 1.0 ppb for Pb2+. Effects of copper and cadmium as potential interferents are reported.  相似文献   

11.
A highly efficient enzyme immobilization method has been developed for electrochemical biosensors using polydopamine films with gold nanoparticles (AuNPs) embedded. This simple enzyme fabrication method can be performed in very mild conditions and stored in a long time with high bioactivity. The fabricated amperometric glucose biosensor exhibited a high and reproducible sensitivity, wide linear dynamic range and low limit of detection (LOD) (0.1 μmol·L?1). A low value of 1.5 mmol·L?1 for the apparent Michaelis‐Menten constant KappM was obtained. The high sensitivity, wide linear range, good reproducibility and stability make this biosensor a promising candidate for portable amperometric glucose biosensor.  相似文献   

12.
A highly effective strategy for quantification of plasmid which was a special dsDNA based on bisPNA by electrochemical impedance spectroscopy was presented in this work. Firstly, through Au?S bond, thiol‐terminated bisPNA probes were immobilized onto the gold electrode surface. Then bisPNA probes directly hybridized with target plasmid DNA pBR322 based on the PNA.DNA‐PNA invasion triplex without denaturation. In the presence of redox electroactive ions [Fe(CN)6]3?/4? as hybridization indicator, the charge transfer resistance (Rct) was produced, and Rct was measured via electrochemical impedance spectroscopy. Under optimal conditions, this strategy showed a good linear relationship between the ΔRct which was the difference of Rct obtained before and after bisPNA hybridized with plasmid pBR322, and logarithm of the concentration of plasmid pBR322 within the range from 1 nM to 100 nM (R2=0.993), with a limit of detection (LOD) of 0.1 nM. Furthermore, this bisPNA‐assisted biosensor showed good stability and satisfactory analytical reliability. In addition, this novel bisPNA‐assisted biosensor also exhibited excellent analytical results in human serum.  相似文献   

13.
A biosensor containing Ag nanoparticles in ionic liquid (IL) 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI.Tf2N) and laccase (Lac) immobilized on β‐cyclodextrin modified with epichlorohydrin (β‐CDEpi) was developed for quercetin determination. Lac catalyses the oxidation of quercetin to quinone, which is then reduced on the biosensor surface and the resulting current was investigated by square‐wave voltammetry. The β‐CDEpi support was analyzed by scanning electron microscopy and Ag‐BMI.Tf2N by transmission electron microscopy and X‐ray diffraction. The linear range (0.499–7.407 μM) and low detection limit (0.037±0.004 μM) show that the proposed biosensor is suitable for quercetin determination in real samples.  相似文献   

14.
唐明宇袁若  柴雅琴 《中国化学》2006,24(11):1575-1580
The third generation amperometric biosensor for the determination of hydrogen peroxide (H2O2) has been described. For the fabrication of biosensor, o-aminobenzoic acid (oABA) was first electropolymerized on the surface of platinum (Pt) electrode as an electrostatic repulsion layer to reject interferences. Horseradish peroxidase (HRP) absorbed by nano-scaled particulate gold (nano-Au) was immobilized on the electrode modified with polymerized o-aminobenzoic acid (poABA) with L-cysteine as a linker to prepare a biosensor for the detection of H2O2. Amperometric detection of H2O2 was realized at a potential of +20 mV versus SCE. The resulting biosensor exhibited fast response, excellent reproducibility and sensibility, expanded linear range and low interferences. Temperature and pH dependence and stability of the sensor were investigated. The optimal sensor gave a linear response in the range of 2.99×10^-6 to 3.55×10^-3 mol·L^-1 to H2O2 with a sensibility of 0.0177 A·L^-1·mol^-1 and a detection limit (S/N = 3) of 4.3×10^-7 mol·L^-1. The biosensor demonstrated a 95% response within less than 10 s.  相似文献   

15.
《Electroanalysis》2004,16(17):1385-1392
A bienzyme biosensor in which the enzymes β‐galactosidase (β‐Gal), fructose dehydrogenase (FDH), and the mediator tetrathiafulvalene (TTF) were coimmobilized by cross‐linking with glutaraldehyde atop a 3‐mercaptopropionic acid (MPA) self‐assembled monolayer on a gold disk electrode, is reported. The working conditions selected were Eapp=+0.10 V and (25±1) °C. The useful lifetime of one single TTF‐β‐Gal‐FDH‐MPA‐AuE was surprisingly long, 81 days. A linear calibration plot was obtained for lactulose over the 3.0×10?5–1.0×10?3 mol L?1 concentration range, with a limit of detection of 9.6×10?6 mol L?1. The effect of potential interferents (lactose, glucose, galactose, sucrose, and ascorbic acid) on the biosensor response was evaluated. The behavior of the SAM‐based biosensor in flow‐injection systems in connection with amperometric detection was tested. The analytical usefulness of the biosensor was evaluated by determining lactulose in a pharmaceutical preparation containing a high lactulose concentration, and in different types of milk. Finally, the analytical characteristics of the TTF‐β‐Gal‐FDH‐MPA‐AuE are critically compared with those reported for other recent enzymatic determinations of lactulose.  相似文献   

16.
A label‐free DNA biosensor based on three‐dimensional reduced graphene oxide (3D‐rGO) and polyaniline (PANI) nanofibers modified glassy carbon electrode (GCE) was successfully developed for supersensitive detection of breast cancer BRCA1. The results demonstrated that 3D‐rGO and PANI nanofibers had synergic effects for reducing the charge transfer resistance (Rct), meaning a huge enhancement in electrochemical activity of 3D‐rGO‐PANI/GCE. Probe DNA could be immobilized on 3D‐rGO‐PANI/GCE for special and sensitive recognition of target DNA (1.0×10?15–1.0×10?7 M) with a theoretical LOD of 3.01×10?16 M (3S/m). Furthermore, this proposed nano‐biosensor could directly detect BRCA1 in real blood samples.  相似文献   

17.
A novel voltammetric biosensor based on nano‐TiO2/nafion/carbon nanoparticles modified glassy carbon electrode (TiO2/N/CNP/GCE) was developed for the determination of dobutamine (DBA). Characterization of the surface morphology and property of TiO2/N/CNP layer was carried out by the scanning electron microscopy and atomic force microscopy. The electrochemical performance of the modified electrode was investigated by means of the cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy techniques. Effective experimental variables, such as the scan rate, pH of the supporting electrolyte, drop size of the casted modifier suspension and accumulation conditions of DBA on the surface of TiO2/N/CNP/GCE were optimized. Under the optimized conditions, a significant electrochemical improvement was observed toward the electro‐oxidation of DBA on the surface of TiO2/N/CNP/GCE compared to the bare GCE. Under the optimized conditions, a wide linear dynamic range (6 nM–1 µM) with a low detection limit of 2 nM for DBA was resulted. The prepared modified electrode shows high sensitivity, stability and good reproducibility in the determination of DBA concentrations. Satisfactory results were obtained for DBA analysis in the pharmaceutical and clinical preparations using TiO2/N/CNP/GCE.  相似文献   

18.
《Electroanalysis》2017,29(12):2832-2838
In this study, a bimetallic nanomaterial‐based electrochemical immunosensor was developed for the detection of carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF) cancer biomarkers at the same time. CEA and VEGF biomarkers are indicators for colon and breast cancers and stomach cancers, respectively. During the study, gold nanoparticle (AuNp), lead nanoparticle (PbNp), copper nanoparticle (CuNp) and magnetic gamma iron(III)oxide (γFe2O3 Np) were synthesized, characterized and used together for the first time in the structure of an electrochemical biosensor based on anti‐CEA and anti‐VEGF. For this purpose, Au SPE based sandwich immunosensor was fabricated by using labeled anti‐CEA (labeled with Pb+2) and labeled anti‐VEGF (labeled with Cu+2). As a result, CEA and VEGF biomarkers were detected following the oxidation peaks of label metals (Pb+2 and Cu+2) by using differential pulse voltammetry. After the experimental parameters were optimized, the linear range was found in the concentration range between 25 ng/mL and 600 ng/mL with the relative standard deviation (RSD) value of (n=3 for 600 ng/mL) 3.33 % and limit of detection (LOD) value of 4.31 ng/mL for CEA biomarker. On the other hand, the linear range was found in the concentration range between 0.2 ng/mL and 12.5 ng/mL with the RSD value of (n=3 for 12.5 ng/mL) 5.31 % and LOD value of 0.014 ng/mL for VEGF biomarker. Lastly, sample application studies for synthetic plasma sample and interference studies with dopamine, ascorbic acid, BSA, cysteine and IgG were carried out.  相似文献   

19.
An amperometric tyramine biosensor based on poly‐L‐lysine (PLL) and Fe3O4 nanoparticles (Fe3O4NP) modified screen printed carbon electrode (SPCE) was developed. PLL was formed on the SPCE by the electropolymerization of L‐lysine. Subsequently, Fe3O4NP suspension prepared in chitosan (CH) solution was casted onto the PLL/SPCE. Tyrosinase (Ty) enzyme was immobilized onto the modified Fe3O4?CH/PLL/SPCE and the electrode was coated with Nafion to fabricate the Ty/Fe3O4?CH/PLL/SPCE. Different techniques including scanning electron microscopy, chronoamperometry (i–t curve), cyclic voltammetry and electrochemical impedance spectroscopy were utilized to study the fabrication processes, electrochemical characteristics and performance parameters of the biosensor. The analytical performance of the tyramine biosensor was evaluated with respect to linear range, sensitivity, limit of detection, repeatability and reproducibility. The response of the biosensor to tyramine was linear between 4.9×10?7–6.3×10?5 M with a detection limit of 7.5×10?8 M and sensitivity of 71.36 μA mM?1 (595 μA mM?1 cm?2). The application of the developed biosensor for the determination of tyramine was successfully tested in cheese sample and mean analytical recovery of added tyramine in cheese extract was calculated as 101.2±2.1 %. The presented tyramine biosensor is a promising approach for tyramine analysis in real samples due to its high sensitivity, rapid response and easy fabrication.  相似文献   

20.
田孟魁  冯喜兰 《中国化学》2008,26(7):1251-1256
建立了顶空固相微萃取联结气相色谱-电子捕获检测器(HS-SPME-GC-ECD)测定水中多溴联苯醚的方法。制作了多壁碳纳米管涂层固相微萃取探头。优化了萃取时间,萃取温度,搅拌速度,顶空体积,溶液的pH,离子强度及有机溶剂等影响萃取效率的各种因素。比较了室温和100 ℃顶空萃取和直接萃取的效率。结果表明,室温下直接萃取比顶空萃取的效率高2-4倍,而在100 ℃时顶空萃取比直接萃取的效率高1-8倍。除BDE-154外,无论直接萃取还是顶空萃取,100 ℃时的萃取效率均高于室温。方法的线性范围50-1600 ng/L,相关系数为0.995-0.998,5种多溴联苯醚的最低检出限(S/N=3)为1.14-16.25 ng/L,相对标准偏差(RSD%,n=5)小于10%。本方法用于真实水样的测定,回收率为74.2%-98.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号