首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Electroanalysis》2005,17(7):630-634
Myoglobin (Myb) of horse heart is incorporated on multi‐walled carbon nanotubes (MWNTs) and immobilized at a glassy carbon (GC) electrode surface. Its electrochemical behavior and enzyme activity are characterized by employing electrochemical methods. The results indicate that MWNTs can obviously promote the direct electron transfer between Myb and electrode, and that the Myb on MWNTs behaves as an enzyme‐like activity towards the electrochemical reduction of nitric oxide (NO). Accordingly, an unmediated NO biosensor is constructed. Experimental results reveal that the peak current related to NO is linearly proportional to its concentration in the range of 2.0×10?7–4.0×10?5 mol/L. The detection limit is estimated to be 8.0×10?8 mol/L. Considering a relative standard deviation of 2.1% in seven independent determinations of 1.0×10?5 mol/L NO, this biosensor shows a good reproducibility. The biosensor based on Myb/MWNTs modified electrode can be used for the rapid determination of trace NO in aqueous solution with a good stability, nice selectivity and easy construction.  相似文献   

2.
Simultaneous determination of dihydroxybenzene isomers was investigated at a multi‐wall carbon nanotubes (MWCNTs)/β‐cyclodextrin composite modified carbon ionic liquid electrode in phosphate buffer solution (pH 7.0, 1/15 mol/L) in the presence of cationic surfactant cetylpyridinium bromide (CPB). With the great enhancement of surfactant CPB, the voltammetric responses of dihydroxybenzene isomers were more sensitive and selective. The oxidation peak potential of hydroquinone was about 0.024 V, catechol was about 0.140 V and resorcinol 0.520 V in differential pulse voltammetric (DPV) measurements, which indicated that the dihydroxybenzene isomers could be separated entirely. The electrode showed wide linear behaviors in the range of 1.2×10?7–2.2×10?3, 7.0×10?7–1.0×10?3, 2.6×10?6–9.0×10?4 mol/L for hydroquinone, catechol and resorcinol, respectively. And the detection limits of the three dihydroxybenzene isomers were 4.0×10?8, 8.0×10?8, 9.0×10?7 mol/L, respectively. The proposed method could be applied to the determination of dihydroxybenzene isomers in artificial wastewater, and the recovery was from 97.4% to 104.2%.  相似文献   

3.
In this paper a graphene (GR) modified carbon ionic liquid electrode (CILE) was fabricated and used as the voltammetric sensor for the sensitive detection of catechol. Due to the specific physicochemical characteristics of GR such as high surface area, excellent conductivity and good electrochemical properties, the modified electrode exhibits rapid response and strong catalytic activity with high stability toward the electrochemical oxidation of catechol. A pair of well‐defined redox peaks appeared with the anodic and the cathodic peak potential located at 225 mV and 133 mV (vs.SCE) in pH 6.5 phosphate buffer solution, respectively. Electrochemical behaviors of catechol on the GR modified CILE were carefully investigated and the electrochemical parameters were calculated with the results of the electrode reaction standard rate constant (ks) as 1.24 s?1, the charge transfer coefficient (α) as 0.4 and the electron transfer number (n) as 2. Under the selected conditions the differential pulse voltammetric peak current increased linearly with the catechol concentrations in the range from 1.0 × 10‐7 to 7.0 × 10?4mol L‐1 with the detection limit as 3.0 × 10?8mol L‐1 (3σ). The proposed method was further applied to the synthetic waste water samples determination with satisfactory results  相似文献   

4.
《Electroanalysis》2005,17(10):832-838
A simply and high selectively electrochemical method for simultaneous determination of hydroquinone and catechol has been developed at a glassy carbon electrode modified with multiwall carbon nanotubes (MWNT). It was found that the oxidation peak separation of hydroquinone and catechol and the oxidation currents of hydroquinone and catechol greatly increase at MWNT modified electrode in 0.20 M acetate buffer solution (pH 4.5). The oxidation peaks of hydroquinone and catechol merge into a large peak of 302 mV (vs. Ag/AgCl, 3 M NaCl) at bare glassy carbon electrode. The two corresponding well‐defined oxidation peaks of hydroquinone in the presence of catechol at MWNT modified electrode occur at 264 mV and 162 mV, respectively. Under the optimized condition, the oxidation peak current of hydroquinone is linear over a range from 1.0×10?6 M to 1.0×10?4 M hydroquinone in the presence of 1.0×10?4 M catechol with the detection limit of 7.5×10?7 M and the oxidation peak current of catechol is linear over a range from 6.0×10?7 M to 1.0×10?4 M catechol in the presence of 1.0×10?4 M hydroquinone with the detection limit of 2.0×10?7 M. The proposed method has been applied to simultaneous determination of hydroquinone and catechol in a water sample with simplicity and high selectivity.  相似文献   

5.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed.  相似文献   

6.
WANG Yuane  PAN Dawei  LI Xinmin  QIN Wei 《中国化学》2009,27(12):2385-2391
A bismuth/multi‐walled carbon nanotube (Bi/MWNT) composite modified electrode for determination of cobalt by differential pulse adsorptive cathodic stripping voltammetry is described. The electrode is fabricated by potentiostatic pre‐plating bismuth film on an MWNT modified glassy carbon (GC) electrode. The Bi/MWNT composite modified electrode exhibits enhanced sensitivity for cobalt detection as compared with the bare GC, MWNT modified and bismuth film electrodes. Numerous key experimental parameters have been examined for optimum analytical performance of the proposed electrode. With an adsorptive accumulation of the Co(II)‐dimethylglyoxime complex at ?0.8 V for 200 s, the reduction peak current is proportional to the concentration of cobalt in the range of 4.0×10?10?1.0×10?7 mol/L with a lower detection limit of 8.1×10?11 mol/L. The proposed method has been applied successfully to cobalt determination in seawater and lake water samples.  相似文献   

7.
《Analytical letters》2012,45(14):2653-2663
Abstract

A multi‐walled carbon nanotubes modified glassy carbon electrode (MWNTs/GCE) was fabricated, and the electrochemical behaviors of acetaminophen (ACOP) were investigated on the MWNTs/GCE. The results showed that MWNTs exhibited excellent electrocatalytic effects on the reaction of ACOP by accelerating the electron transfer rate. Cyclic voltammetry (CV) was used to explore the electrochemical redox mechanism of ACOP on the MWNTs/GCE and differential pulse voltammetry (DPV) was taken to determine ACOP in samples, respectively. The results showed that the oxidative peak currents were linear with the concentration of ACOP in the range of 4.0×10?7–1.5×10?4 mol l?1 with the detection limit 1.2×10?7 mol l?1. The MWNTs/GCE showed satisfactory stability, selectivity, and it can be used to quantify ACOP in effervescent dosage real samples.  相似文献   

8.
QU  Yunhe  LIU  ye  ZHOU  Tianshu  SHI  Guoyue  JIN  Litong 《中国化学》2009,27(10):2043-2048
An electrochemical sensor was modified with multi‐wall carbon nanotubes (MWCNT) and molecularly imprinted polymer (MIP) material synthesized with acrylamide and ethylene glycol dimethacrylate (EGDMA) in the presence of 1,3‐dinitrobenzene (DNB) as the template molecule. The MWCNT and MIP layers were successively modified on the surface of a glassy carbon electrode (GCE), of which the MIP film works as an artificial receptor due to its specific molecular recognition sites. The MIP material was characterized by FT‐IR and electrochemical methods of square wave voltammetry (SWV). The interferences of other nitroaromatic compounds (NAC) such as 2,4,6‐trinitrotoluene (TNT), 1,3,5‐trinitrobenzene (TNB) and 2,4‐dinitrotoluene (DNT) to DNB were also investigated by the prepared MIP/MWCNT electrode. Compared with other traditional sensors, the MIP/MWCNT modified electrode shows good selectivity and sensitivity. In addition, the current responses to DNB are linear with the concentration ranging from 4.5×10?8 to 8.5×10?6 mol/L with the detection limits of 2.5×10?8 (?0.58 V) and 1.5×10?8 mol/L (?0.69 V) (S/N=3). The construction process of MIP/MWCNT modified electrode was also studied as well. All results indicate that the MIP/MWCNT modified electrode established an improving way for simple, fast and selective analysis of DNB.  相似文献   

9.
《Electroanalysis》2005,17(9):749-754
A sensitive electrochemical method for the determination of simvastatin (SV) was established, based on the enhanced oxidation of SV at a multi‐walled carbon nanotubes‐dihexadecyl hydrogen phosphate composite modified glassy carbon electrode (MWNTs‐DHP/GCE). The voltammetric studies showed that MWNTs instead of DHP or GCE could effectively catalyze the oxidation of SV. The dependence of oxidation current on SV concentration was explored under optimal conditions, which exhibited a good linear relationship in the range of 1.0×10?7–7.5×10?6 M. The detection limit of SV was also examined and a low value of 5.0×10?8 M was obtained for 5 min accumulation (σ=3). This electrode was applied to the detection of SV in drug forms and the results were in accordance with those obtained by UV spectroscopy.  相似文献   

10.
A new carbon nanotubes modified electrode (poly‐Nq‐MWCNTs/GCE) was fabricated by electropolymerization of 1,2‐naphththoquinone to the surface of multi‐walled carbon nanotubes modified electrode by casting method. The morphology of the nanocomposite was characterized by scanning electron microscopy. Cyclic voltammetry and chronoamperometry were applied to investigate the electrochemical properties of the poly‐Nq‐MWCNTs nanocomposite modified electrode. The result of electrochemical experiments showed that such modified electrode had a favorable catalytic ability to oxidation of β‐nicotinamide adenine dinucleotide (NADH). The resulted sensor was sensitiveness to NADH and achieved 95β of the steady‐state current within 5s. Furthermore, the anodic peak current was linear to the concentration of NADH for the range from 1.0 μM to 0.14 mM. The linear equation was: I(μA) = 0.3987 + 0.1035c (μmol/L), the correlation coefficient r = 0.9962, the detect limit is down to 1 × 10?7 M (S/N = 3) and the sensitivity is 0.1035 μA/mmol. The well catalytic activity of the sensor was ascribed to the synergistic effect role played by MWCNTs and poly‐Nq. Moreover, the based sensor possesses good stability and reproducibility.  相似文献   

11.
A sensitive and selective imprinted electrochemical sensor for the determination of oxacillin was developed based on indium tin oxide electrode. The proposed sensor was decorated with imprinted sol–gel film and cobalt nanoparticles‐chitosan/β‐cyclodextrin‐multiwalled carbon nanotubes nanocomposites. The surface morphologies of the modified electrodes were characterized by scanning electron microscopy and transmission electron microscope. The stepwise assembly process and electrochemical behavior of the novel sensor were characterized by differential pulse voltammetry, cyclic voltammetry and Amperometric i‐t response. The imprinted sensor displayed excellent selectivity toward oxacillin. Meanwhile, the introduced cobalt nanoparticles‐chitosan and β‐cyclodextrin‐multi‐walled carbon nanotubes exhibited noticeable amplified electrochemical response signal. The differential voltammetric anodic peak current was linear to oxacillin concentration in the range from 2.0 × 10?7 to 1.0 × 10?4 mol·l?1, and the detection limit was 6.9 × 10?9 mol·l?1. The proposed imprinted sensor was applied to the determination of oxacillin in human blood serum samples successfully. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In the present work, an electrochemical sensor was developed for simple and sensitive determination of tryptophan (Trp) using multi‐walled carbon nanotubes modified sol‐gel electrode (MWCNTs/SGE). The electrocatalytic oxidation of tryptophan was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the oxidation peak current of Trp at the MWCNTs/SGE was greatly improved compared with that of the bare SGE. Furthermore, at the MWCNTs/SGE, the anodic peak potential of Trp is shifted about 220 mV to more negative value indicated that modified electrode has better electrocatalytic activity for electro‐oxidation of Trp. The anodic peak currents increased linearly with the concentration of tryptophan in the range of 0.2 × 10?6 to 15 × 10?6 M with a detection limit of 0.139 × 10?6 M (at an S/N = 3).  相似文献   

13.
《Electroanalysis》2006,18(7):703-711
A simple procedure was developed to prepare a glassy carbon electrode modified with carbon nanotubes (CNTs) and thionin. Abrasive immobilization of CNTs on a GC electrode was achieved by gently rubbing the electrode surface on a filter paper supporting carbon nanotubes, then immersing the GC/CNTs‐modified electrode into a thionin solution (electroless deposition) for a short period of time (5–50 s for MWCNTs and 5–120 s for SWCNTs ). Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range 2–12. The electrochemical reversibility and stability of modified electrode prepared with incorporation of thionin into CNTs film was compared with usual methods for attachment of thionin to electrode surfaces such as electropolymerization and adsorption on the surface of preanodized electrodes. The formal potential of redox couple (E°′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of thionin immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2 and 3.2×10?10 mol cm?2 for MWCNTs and SWCNTs, respectively. The transfer coefficient (α) was calculated to be 0.3 and 0.35 and heterogeneous electron transfer rate constants (Ks) were 65 s?1 and 55 s?1 for MWCNTs/thionin and SWCNTs/thionin‐modified GC electrodes, respectively. The results clearly show a great facilitation of the electron transfer between thionin and CNTs adsorbed on the electrode surface. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of electrodes.  相似文献   

14.
A sensitive voltammetric technique has been developed for the determination of Fludarabine using amine‐functionalized multi walled carbon nanotubes modified glassy carbon electrode (NH2‐MWCNTs/GCE). Molecular dynamics simulations, an in silico technique, were employed to examine the properties including chemical differences of Fludarabine‐ functionalized MWCNT complexes. The redox behavior of Fludarabine was examined by cyclic, differential pulse and square wave voltammetry in a wide pH range. Cyclic voltammetric investigations emphasized that Fludarabine is irreversibly oxidized at the NH2‐MWCNTs/GCE. The electrochemical behavior of Fludarabine was also studied by cyclic voltammetry to evaluate both the kinetic (ks and Ea) and thermodynamic (ΔH, ΔG and ΔS) parameters on NH2‐MWCNTs/GCE at several temperatures. The mixed diffusion‐adsorption controlled electrochemical oxidation of Fludarabine revealed by studies at different scan rates. The experimental parameters, such as pulse amplitude, frequency, deposition potential optimized for square‐wave voltammetry. Under optimum conditions in phosphate buffer (pH 2.0), a linear calibration curve was obtained in the range of 2×10?7 M–4×10?6 M solution using adsorptive stripping square wave voltammetry. The limit of detection and limit of quantification were calculated 2.9×10?8 M and 9.68×10?8 M, respectively. The developed method was applied to the simple and rapid determination of Fludarabine from pharmaceutical formulations.  相似文献   

15.
The voltammetric behavior of uric acid (UA) was studied at a carbon-ceramic electrode modified with multi walled carbon nanotubes; which was developed via a simple procedure. UA can be effectively oxidized at the surface of the electrode and produced an anodic peak at about 0.29 V in pH 6.8 phosphate buffer solutions. The experimental parameters such as pH, accumulation time, and amount of multi walled carbon nanotubes were optimized for determination of UA. Under the optimum conditions, the anodic peak current in differential pulse voltammetry is linear to the UA concentration over the range from 2.5×10?7M to 1.0×10?4 M with a correlation coefficient of 0.998. The electrode exhibited good stability and could be easily regenerated. The relative standard deviation of the peak current obtained for a 5.0?×?10?5 M UA solution was 1.0%. The influence of dopamine and ascorbic acid on the anodic peak current of UA was examined. This method was successfully applied for the determination of uric acid in human urine sample, and the recovery was 99.9%.  相似文献   

16.
An electrochemical method for the determination of tripelennamine hydrochloride (TPA) using cetyltrimethylammoniumbromide‐multiwalled carbon nanotubes modified glassy carbon electrode (MWCNT‐CTAB/GCE) was developed. Because of good electrical conductivity of MWCNT and catalytic behavior of CTAB, new electrode significantly enhances the sensitivity for the detection of TPA. Parameters such as amount of modifier suspension, scan rate, pH of measure solution, heterogeneous rate constant were investigated. The electrode exhibits a linear potential response in the range of 1.0×10?8 M to 3.0×10?6 M with a detection limit of 2.38× 10?9 M. The modified electrode was successfully applied to the determination of TPA in pharmaceutical and real samples.  相似文献   

17.
《Electroanalysis》2003,15(10):892-897
A new chemically modified electrode (CME) was fabricated, which was based on the immobilization of multi‐wall carbon nanotubes fuctionalized with carboxylic group (MWNT‐COOH). The results indicated that the CME exhibited efficiently electrocatalytic oxidation for L ‐cysteine and glutathione with relatively high sensitivity, stability and long‐life. Coupled with HPLC, the MWNT‐COOH CME was utilized for amperometric detection of the thiols. The peak currents of L ‐cysteine and glutathione were linear to their concentrations ranging from 3.0×10?7 to 1.0×10?3 mol/L with the calculated detection limit (S/N=3) of 1.2×10?7, 2.2×10?7 mol/L, respectively. The method had been successfully applied to assess the contents of L ‐cysteine and glutathione in rat striatal microdialysates.  相似文献   

18.
In this paper, nichrome was adopted as a substrate, to fabricate the pre‐anodized inlaying ultrathin carbon paste electrode (PAIUCPE). The electrochemical behaviors and diffusion mechanisms of three dihydroxybenzene isomers at the electrode were carefully investigated. The effect of pH on oxidation peak current was also detailedly explained. The results were shown that oxidation peak current not only related to the reaction of electroactive materials at the working electrode, but also depended on the reaction variable of reduction at the auxiliary electrode. The oxidation peaks of hydroquinone (HQ), catechol (CC) and resorcinol (RC) located at 0.181 V, 0.288 V and 0.736 V. For CC, RC and HQ, the oxidation peak currents were linear to the concentrations at the range of 5.0 × 10?6~5.0 × 10?4 mol/L, 3.0 × 10?6~5.0 × 10?4 mol/L and 4.0 × 10?6~4.0 × 10?4 mol/L with the detection limits of 2.0 × 10?7 mol/L, 1.2 × 10?7 mol/L and 1.2 × 10?7 mol/L, respectively. The proposed method was successfully applied in the simultaneous determination of dihydroxybenzene isomers in artificial sewage samples with satisfactory results.  相似文献   

19.
We report a rapid and simple method for sensing estradiol by electro‐oxidation on a multi‐walled carbon nanotube (MWCNT) and gold nanoparticle (AuNP) modified glassy carbon electrode (GCE). Compared with a bare GCE, AuNP/GCE and MWCNT/GCE, the composite modified GCE shows an enhanced response to estradiol in 0.1 M phosphate buffer solution. Experimental parameters, including pH and accumulation time for estradiol determination were optimised at AuNP/MWCNT/GCE. A pH of 7.0 was found to be optimum pH with an accumulation time of 5 minutes. Estradiol was determined by linear sweep voltammetry over a dynamic range up to 20 %mol L?1 and the limit of detection was estimated to be 7.0×10?8 mol L?1. The sensor was successfully applied to estradiol determination in tap water and waste water.  相似文献   

20.
A cobalt oxide nanoparticles (Co3O4NPs) and multi walled carbon nanotubes (MWCNTs) modified carbon paste electrodes were used to study the electrochemical behavior of linagliptin and empagliflozin in Britton Robinson buffer solution of pH 8.0 using cyclic and square wave voltammetry. The above mentioned modified electrodes showed highly sensitive sensing and gave an excellent anodic response for both drugs. The peak current varied linearly over the concentration ranges: 3.98×10?5–1.53×10?3 mol L?1 (18.82–723.00 μg/mL) and 7.94×10?6–1.07×10?4 mol L?1 (3.65–48.25 μg/mL) with determination coefficients of 0.9999 and 0.9998 for linagliptin and empagliflozin, respectively. The recoveries and relative standard deviations were found in the following ranges: 98.80 %–102.00 % and 0.23 %–1.90 % for linagliptin and 98.30 %–101.80 % and 0.11 %–1.86 % for empagliflozin. The detection and quantification limits were 1.13×10?5 and 3.76×10?5 mol L?1 (5.34and17.77 μg/mL) for linagliptin, 1.71×10?6and 5.68×10?6 mol L?1 (0.77 and 2.56 μg/mL) for empagliflozin. The proposed sensors have been successfully applied for the determination of the drugs in bulk, pharmaceutical formulations and biological fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号