首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We present a robust and accurate numerical method for simulating gravity-driven, thin-film flow problems. The convection term in the governing equation is treated by a semi-implicit, essentially non-oscillatory scheme. The resulting nonlinear discrete equation is solved using a nonlinear full approximation storage multigrid algorithm with adaptive mesh refinement techniques. A set of representative numerical experiments are presented. We show that the use of adaptive mesh refinement reduces computational time and memory compared to the equivalent uniform mesh results. Our simulation results are consistent with previous experimental observations.  相似文献   

2.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   

3.
We present a robust numerical method for solving incompressible, immiscible two-phase flows. The method extends both a monolithic phase conservative level set method with embedded redistancing and a semi-implicit high-order projection scheme for variable-density flows. The level set method can be initialized conveniently via a simple phase indicator field instead of a signed distance function (SDF). To process the indicator field into a SDF, we propose a new partial differential equation-based redistancing method. We also improve the monolithic level set scheme to provide more accuracy and robustness in full two-phase flow simulations. Specifically, we perform an extra step to ensure convergence to the signed distance level set function and simplify other aspects of the original scheme. Lastly, we introduce consistent artificial viscosity to stabilize the momentum equations in the context of the projection scheme. This stabilization is algebraic, has no tunable parameters and is suitable for unstructured meshes and arbitrary refinement levels. The overall methodology includes few numerical tuning parameters; however, for the wide range of problems that we solve, we identify only one parameter that strongly affects performance of the computational model and provide a value that provides accurate results across all the benchmarks presented. This methodology results in a robust, accurate, and efficient two-phase flow model, which is mass- and volume-conserving on unstructured meshes and has low user input requirements, making it attractive for real-world applications.  相似文献   

4.
This paper aims at the development of a new stabilization formulation based on the finite calculus (FIC) scheme for solving the Euler equations using the Galerkin FEM on unstructured triangular grids. The FIC method is based on expressing the balance of fluxes in a space–time domain of finite size. It is used to prevent the creation of instabilities typically present in numerical solutions due to the high convective terms and sharp gradients. Two stabilization terms, respectively called streamline term and transverse term, are added via the FIC formulation to the original conservative equations in the space–time domain. An explicit fourth‐order Runge–Kutta scheme is implemented to advance the solution in time. The presented numerical test examples for inviscid flows prove the ability of the proposed stabilization technique for providing appropriate solutions especially near shock waves. Although the derived methodology delivers precise results with a nearly coarse mesh, a mesh refinement technique is coupled to the solution process for obtaining a suitable mesh particularly in the high‐gradient zones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
在实际工程计算中,存在大量的弱不连续问题,如含夹杂问题。利用通常的有限元方法,为确保界面上各点满足给定高精度,往往需要采用全域网格加密或全域提高单元阶次的方法,这将会导致计算机的物理内存和CPU时间的剧烈增长。p-型自适应有限元方法是一种能通过自适应分析逐步增加单元阶次以改善计算精度的数值方法。本文,我们针对弱不连续问题设计了相应的p-型自适应有限元方法,重点讨论了容许误差控制标准对界面上各点计算结果的影响,并对几类典型的弱不连续问题进行了数值计算与模拟。数值结果表明,本文设计的p-型自适应有限元方法对求解弱不连续问题是非常有效的,用较少的单元得到精度可靠的数值结果,可大大提高其有限元分析效率。  相似文献   

6.
In this paper, we present a numerical scheme for solving 2‐phase or free‐surface flows. Here, the interface/free surface is modeled using the level‐set formulation, and the underlying mesh is adapted at each iteration of the flow solver. This adaptation allows us to obtain a precise approximation for the interface/free‐surface location. In addition, it enables us to solve the time‐discretized fluid equation only in the fluid domain in the case of free‐surface problems. Fluids here are considered incompressible. Therefore, their motion is described by the incompressible Navier‐Stokes equation, which is temporally discretized using the method of characteristics and is solved at each time iteration by a first‐order Lagrange‐Galerkin method. The level‐set function representing the interface/free surface satisfies an advection equation that is also solved using the method of characteristics. The algorithm is completed by some intermediate steps like the construction of a convenient initial level‐set function (redistancing) as well as the construction of a convenient flow for the level‐set advection equation. Numerical results are presented for both bifluid and free‐surface problems.  相似文献   

7.
In the present paper, we develop a generalised finite difference approach based on compact integrated radial basis function (CIRBF) stencils for solving highly nonlinear Richards equation governing fluid movement in heterogeneous soils. The proposed CIRBF scheme enjoys a high level of accuracy and a fast convergence rate with grid refinement owing to the combination of the integrated RBF approximation and compact approximation where the spatial derivatives are discretised in terms of the information of neighbouring nodes in a stencil. The CIRBF method is first verified through the solution of ordinary differential equations, 2–D Poisson equations and a Taylor‐Green vortex. Numerical comparisons show that the CIRBF method outperforms some other methods in the literature. The CIRBF method in conjunction with a rational function transformation method and an adaptive time‐stepping scheme is then applied to simulate 1–D and 2–D soil infiltrations effectively. The proposed solutions are more accurate and converge faster than those of the finite different method used with a second‐order central difference scheme. Additionally, the present scheme also takes less time to achieve target accuracy in comparison with the 1D‐IRBF and higher order compact schemes.  相似文献   

8.
A multi‐block curvilinear mesh‐based adaptive mesh refinement (AMR) method is developed to satisfy the competing objectives of improving accuracy and reducing cost. Body‐fitted curvilinear mesh‐based AMR is used to capture flow details of various length scales. A series of efforts are made to guarantee the accuracy and robustness of the AMR system. A physics‐based refinement function is proposed, which is proved to be able to detect both shock wave and vortical flow. The curvilinear mesh is refined with cubic interpolation, which guarantees the aspect ratio and smoothness. Furthermore, to enable its application in complex configurations, a sub‐block‐based refinement strategy is developed to avoid generating invalid mesh, which is the consequence of non‐smooth mesh lines or singular geometry features. A newfound problem of smaller wall distance, which negatively affects the stability and is never reported in the literature, is also discussed in detail, and an improved strategy is proposed. Together with the high‐accuracy numerical scheme, a multi‐block curvilinear mesh‐based AMR system is developed. With a series of test cases, the current method is verified to be accurate and robust and be able to automatically capture the flow details at great cost saving compared with the global refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
蔡政刚  潘君华  倪明玖 《力学学报》2022,54(7):1909-1920
浸没边界法是处理颗粒两相流中运动边界问题的一种常用数值模拟方法. 当研究的物理问题的无量纲参数满足一定要求时, 该流场结构呈现轴对称状态. 为此本文提出了一种基于2D笛卡尔网格和柱坐标系的轴对称浸没边界法. 该算法采用有限体积法(FVM)对动量方程进行空间离散, 并通过阶梯状锐利界面替代真实的固体浸没边界来封闭控制方程. 为了提高计算效率, 本文采用自适应网格加密技术提高浸没边界附近网格分辨率. 由于柱坐标系的使用, 使得动量方程中的黏性项产生多余的源项, 我们对其作隐式处理. 此外, 在对小球匀速近壁运动进行直接数值模拟时, 由于球壁间隙很小, 间隙内的压力变化比较剧烈. 因此想要精确地解析流场需要很高的网格分辨率. 此时, 需要在一个时间步内多次实施投影步来保证计算的稳定性. 而在小球自由碰壁运动中, 我们通过引入一个润滑力模型使得低网格分辨率下也能模拟小球近壁处的运动. 最后通过小球和圆盘绕流、Stokes流小球近壁运动以及小球自由下落碰壁弹跳算例验证本算法对于轴对称流的静边界和动边界问题均是适用和准确的.   相似文献   

10.
An unstructured dynamic mesh adaptation and load balancing algorithm has been developed for the efficient simulation of three‐dimensional unsteady inviscid flows on parallel machines. The numerical scheme was based on a cell‐centred finite‐volume method and the Roe's flux‐difference splitting. Second‐order accuracy was achieved in time by using an implicit Jacobi/Gauss–Seidel iteration. The resolution of time‐dependent solutions was enhanced by adopting an h‐refinement/coarsening algorithm. Parallelization and load balancing were concurrently achieved on the adaptive dynamic meshes for computational speed‐up and efficient memory redistribution. A new tree data structure for boundary faces was developed for the continuous transfer of the communication data across the parallel subdomain boundary. The parallel efficiency was validated by applying the present method to an unsteady shock‐tube problem. The flows around oscillating NACA0012 wing and F‐5 wing were also calculated for the numerical verification of the present dynamic mesh adaptation and load balancing algorithm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Recently, the domain‐free discretization (DFD) method was presented to efficiently solve problems with complex geometries without introducing the coordinate transformation. In order to exploit the high performance of the DFD method, in this paper, the local DFD method with the use of Cartesian mesh is presented, where the physical domain is covered by a Cartesian mesh and the local DFD method is applied for numerical discretization. In order to further improve the efficiency of the solver, the newly developed solution‐based adaptive mesh refinement (AMR) technique is also introduced. The proposed methods are then applied to the simulation of natural convection in concentric annuli between a square outer cylinder and a circular inner cylinder. Numerical experiments show that the present numerical results agree very well with available data in the literature, and AMR‐enhanced local DFD method is an effective tool for the computation of flow problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a GPU-accelerated nodal discontinuous Galerkin method for the solution of two- and three-dimensional level set (LS) equation on unstructured adaptive meshes. Using adaptive mesh refinement, computations are localised mostly near the interface location to reduce the computational cost. Small global time step size resulting from the local adaptivity is avoided by local time-stepping based on a multi-rate Adams–Bashforth scheme. Platform independence of the solver is achieved with an extensible multi-threading programming API that allows runtime selection of different computing devices (GPU and CPU) and different threading interfaces (CUDA, OpenCL and OpenMP). Overall, a highly scalable, accurate and mass conservative numerical scheme that preserves the simplicity of LS formulation is obtained. Efficiency, performance and local high-order accuracy of the method are demonstrated through distinct numerical test cases.  相似文献   

13.
数值流形方法是一种非常灵活的数值计算方法,连续体的有限单元方法和块体系统的非连续变形分析方法只是这一数值方法的特例.数值流形方法中高阶位移函数的构造可通过提高权函数的阶次来实现,这种方法往往需要沿单元边界配置适当的边内节点,这些结点的出现增加了前处理的复杂性,特别是对于大型复杂的空间问题.另一方面,在数值流形方法中可通过缩小单元尺寸(h加密)来提高求解精度.当模拟裂纹扩展时,这种细化策略可用来克服裂纹尖端的奇异性.一个传统的解决方案是细化整个网格,但这会导致计算效率的显著降低.将适合分析的T样条(analysis-suitable T-spline,AST)引入数值流形方法中来建立高阶数值流形方法的分析格式,有效的避免了该问题的出现.AST样条基函数具有线性无关,单位分解,局部加密等许多重要性质,使得其非常适合用于工程设计及分析.在引入AST样条后,可通过改变数学覆盖的构造形式建立不同阶次的数值流形方法分析格式;AST样条自身的局部加密性质也使得数值流形方法中的数学网格局部加密更容易实现.算例结果表明:随着AST样条基函数阶次的提高,数值流形方法的计算结果有了明显的改善;基于AST样条基函数的数值流形方法在保持计算精度的前提下降低了自由度的数量.  相似文献   

14.
We assess the spatial accuracy and performance of a mixed‐order, explicit multi‐stage method in which an inexpensive low‐order scheme is used for the initial stages, and a more expensive high‐order scheme is used for the final stage only. Compared with the use of a high‐order scheme for all stages, we observe that the mixed‐order scheme achieves comparable accuracy and convergence while providing a speed‐up of a factor of two on mesh sizes of O(106 ? 107) tetrahedron. For calculations with significant adaptive mesh refinement, a more modest speed‐up of 30% is obtained. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

15.
A boundary‐fitted moving mesh scheme is presented for the simulation of two‐phase flow in two‐dimensional and axisymmetric geometries. The incompressible Navier‐Stokes equations are solved using the finite element method, and the mini element is used to satisfy the inf‐sup condition. The interface between the phases is represented explicitly by an interface adapted mesh, thus allowing a sharp transition of the fluid properties. Surface tension is modelled as a volume force and is discretized in a consistent manner, thus allowing to obtain exact equilibrium (up to rounding errors) with the pressure gradient. This is demonstrated for a spherical droplet moving in a constant flow field. The curvature of the interface, required for the surface tension term, is efficiently computed with simple but very accurate geometric formulas. An adaptive moving mesh technique, where smoothing mesh velocities and remeshing are used to preserve the mesh quality, is developed and presented. Mesh refinement strategies, allowing tailoring of the refinement of the computational mesh, are also discussed. Accuracy and robustness of the present method are demonstrated on several validation test cases. The method is developed with the prospect of being applied to microfluidic flows and the simulation of microchannel evaporators used for electronics cooling. Therefore, the simulation results for the flow of a bubble in a microchannel are presented and compared to experimental data.  相似文献   

16.
在均匀网格上求解对流占优问题时,往往会产生数值震荡现象,因此需要局部加密网格来提高解的精度。针对对流占优问题,设计了一种新的自适应网格细化算法。该方法采用流线迎风SUPG(Petrov-Galerkin)格式求解对流占优问题,定义了网格尺寸并通过后验误差估计子修正来指导自适应网格细化,以泡泡型局部网格生成算法BLMG为网格生成器,通过模拟泡泡在区域中的运动得到了高质量的点集。与其他自适应网格细化方法相比,该方法可在同一框架内实现网格的细化和粗化,同时在所有细化层得到了高质量的网格。数值算例结果表明,该方法在求解对流占优问题时具有更高的数值精度和更好的收敛性。  相似文献   

17.
The implementation of an adaptive mesh‐embedding (h‐refinement) scheme using unstructured grid in two‐dimensional direct simulation Monte Carlo (DSMC) method is reported. In this technique, local isotropic refinement is used to introduce new mesh where the local cell Knudsen number is less than some preset value. This simple scheme, however, has several severe consequences affecting the performance of the DSMC method. Thus, we have applied a technique to remove the hanging node, by introducing the an‐isotropic refinement in the interfacial cells between refined and non‐refined cells. Not only does this remedy increase a negligible amount of work, but it also removes all the difficulties presented in the originals scheme. We have tested the proposed scheme for argon gas in a high‐speed driven cavity flow. The results show an improved flow resolution as compared with that of un‐adaptive mesh. Finally, we have used triangular adaptive mesh to compute a near‐continuum gas flow, a hypersonic flow over a cylinder. The results show fairly good agreement with previous studies. In summary, the proposed simple mesh adaptation is very useful in computing rarefied gas flows, which involve both complicated geometry and highly non‐uniform density variations throughout the flow field. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
We present methods for computing either the level set function or volume fraction field from the other at second‐order accuracy. Both algorithms are optimal in that O(N) computations are needed for N total grid points and both algorithms are easily parallelized. This work includes a novel interface reconstruction algorithm in three dimensions that requires a smaller local block of volume fractions than existing algorithms. A compact local solver leads to better algorithm portability and efficiency: for example, fewer restrictions must be imposed on an adaptive mesh, and fewer grid cells must be communicated between processors in a parallel implementation. We also present a fast sweeping method for computing a unique approximation of the signed distance function to a piecewise linear interface. All of the numerical examples confirm second‐order accuracy on both uniform and tree‐based adaptive grids. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper shows how the mesh adaptation technique can be exploited for the numerical simulation of shallow water flow. The shallow water equations are numerically approximated by the Galerkin finite element method, using linear elements for the elevation field and quadratic elements for the unit width discharge field; the time advancing scheme is of a fractional step type. The standard mesh refinement technique is coupled with the numerical solver; movement and elimination of nodes of the initial triangulation is not allowed. Two error indicators are discussed and applied in the numerical examples. The conclusion focuses the relevant advantages obtained by applying this adaptive approach by considering specific test cases of steady and unsteady flows. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
In this work we present a numerical method for solving the incompressible Navier–Stokes equations in an environmental fluid mechanics context. The method is designed for the study of environmental flows that are multiscale, incompressible, variable‐density, and within arbitrarily complex and possibly anisotropic domains. The method is new because in this context we couple the embedded‐boundary (or cut‐cell) method for complex geometry with block‐structured adaptive mesh refinement (AMR) while maintaining conservation and second‐order accuracy. The accurate simulation of variable‐density fluids necessitates special care in formulating projection methods. This variable‐density formulation is well known for incompressible flows in unit‐aspect ratio domains, without AMR, and without complex geometry, but here we carefully present a new method that addresses the intersection of these issues. The methodology is based on a second‐order‐accurate projection method with high‐order‐accurate Godunov finite‐differencing, including slope limiting and a stable differencing of the nonlinear convection terms. The finite‐volume AMR discretizations are based on two‐way flux matching at refinement boundaries to obtain a conservative method that is second‐order accurate in solution error. The control volumes are formed by the intersection of the irregular embedded boundary with Cartesian grid cells. Unlike typical discretization methods, these control volumes naturally fit within parallelizable, disjoint‐block data structures, and permit dynamic AMR coarsening and refinement as the simulation progresses. We present two‐ and three‐dimensional numerical examples to illustrate the accuracy of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号