首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用频谱分析法对超声作用下Fe(CN)6^3-/Fe(CN)6^4-氧化还原体系在Pt微电极上的计量电流实验数据进行分析。通过离散傅里叶变换(DFT)将复杂的时域谱转化为频域谱,较清楚地将超声对电极反应的影响区分为不同频率下的幅值信号,对不同超声条件下的分析结果表明,该方法可定量地分析不同超声条件下超声对传质过程的影响,并分析了超声强度随作用距离增大而衰减的规律。在相同超声条件下的实验结果表明,经DFT处理后的幅值信号大小与反应物浓度成正比。  相似文献   

2.
Baozhen Wang 《Talanta》2007,72(2):415-418
Multilayer thin films composed of poly(allylamine hydrochloride) (PAH) and carboxymethyl cellulose (CMC) have been prepared on the surface of a gold (Au) disk electrode by a layer-by-layer deposition of PAH and CMC and ferricyanide ions ([Fe(CN)6]3−) were confined in the film. [Fe(CN)6]3− ions can be successfully confined in the films from weakly acidic or neutral [Fe(CN)6]3− solutions, while, in basic solution, [Fe(CN)6]3− ion was not confined. The [Fe(CN)6]3− ion-confined Au electrode showed clear redox peaks in the cyclic voltammogram around 0.35 V versus Ag/AgCl. The amounts of [Fe(CN)6]3− ions confined in the films depended on the thickness of the films or the number of layers in the LbL films. The [Fe(CN)6]3− ion-confined Au electrode was used for electrocatalytic determination of ascorbic acid in the concentration range of 1-50 mM.  相似文献   

3.
Carbon nanotube chemically modified electrode (CNT-CME) was prepared by growing carbon nanotube (CNT) in situ on the pretreated graphite electrode (GE) via the catalytic chemical vapor deposition. The pretreated GE was prepared by ultrasonic immersion method using Ni(NO3)2 as the catalyst. The CNT growing on the CNT-CME was characterized by transmission electron microscope and scanning electron microscope. The obtained electrode electrochemical performance was characterized by cyclic voltammetry with the Na2SO4 solution and [Fe(CN)6]3−/[Fe(CN)6]4− solution. The results showed that the obtained electrode has good current responsive sensitivity and good testing result accuracy, indicating that the obtained electrode may have great application in electrochemical testing field.  相似文献   

4.
A non-enzymatic impedimetric glucose sensor was fabricated based on the adsorption of gold nanoparticles (GNPs) onto conductive polyaniline (PANI)-modified glassy carbon electrode (GCE). The modified electrode (GCE/PANI/GNPs) was characterized by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The determination of glucose concentration was based on the measurement of EIS with the mediation of electron transfer by ferricyanide ([Fe(CN)6]3?). The [Fe(CN)6]3? is reduced to ferrocyanide ([Fe(CN)6]4?), which in turn is oxidized at GCE/PANI/GNPs. An increase in the glucose concentration results in an increase in the diffusion current density of the [Fe(CN)6]4? oxidation, which corresponds to a decrease in the faradaic charge transfer resistance (R ct). A wide linear concentration range from 0.3 to 10 mM with a lower detection limit of 0.1 mM for glucose was obtained. The proposed sensor shows high sensitivity, good reproducibility, and stability. In addition, the sensor exhibits no interference from common interfering substances such as ascorbic acid, acetaminophen, and uric acid.  相似文献   

5.
A new strategy of three‐electrode system fabrication in polymer‐based microfluidic systems is described here. Standard lithography, hot embossing and UV‐assisted thermal bonding were employed for fabrication and assembly of the microfluidic chip. For the electrode design the gold working (WE) and counter electrodes (CE) are placed inside a main channel through which the sample solution passes. A silver reference electrode (RE) is embedded in a small side channel containing KCl solution that is continuously pushed into the main channel. In the present work, the overall electrochemical set up and its microfabrication is described. Conditions including silver ion concentration, cyclic voltammetry (CV) settings, and the flow rate of KCl solution in the RE channel were optimized. The electrochemical performance of the three‐electrode system was evaluated by CV and also by amperometric oxidation of ferro hexacyanide ([Fe(CN)6]4?) and ruthenium bipyridyl ([Ru(bipy)3]2+) at 400 mV and 1200 mV, respectively. CV analysis using ferri/ferro hexacyanide showed a stable, quasi‐reversible redox reaction at the electrodes with 96 mV peak separation and an anodic/cathodic peak ratio of 1. Amperometric analysis of the electrochemical species resulted in linear correlation between analyte concentration and current response in the range of 0.5–15 µM for [Fe(CN)6]4?, and 0–1000 µM for [Ru(bipy)3]2+. Upon the given experimental conditions, the limit of detection was found to be 3.15 µM and 24.83 µM for [Fe(CN)6]4? and [Ru(bipy)3]2+, respectively. As a fully integrated three‐electrode system that is fabricated on polymer substrates, it has great applications in microfluidic‐based systems requiring stable electrochemical detection.  相似文献   

6.
A Mach-Zehnder interfeometer is employed to visualize the mass transfer processes at the electrode/electrolyte interface during the potentiodynamic sweep of the Pt electrode in 0.1 mol dm?3 K4Fe(CN)6 with 0.5 mol dm?3 KCl solution at 20 mV s?1. The changes of solution??s refractive index, brought about by the mass transfer during the reaction, can be recorded in situ in interferograms. The distributions of the optical path difference are obtained by numerical reconstruction of interferograms to reflect changes of solution??s refractive index and the mass transfer processes. The mass transfer of [Fe(CN)6]4? and [Fe(CN)6]3? is presented visually. This method provides a new approach to detect the mass transfer processes at the electrode/electrolyte interface in real-time.  相似文献   

7.
In the present paper, we used single-stranded poly-T (100% thymine bases) and poly-C (100% cytosine bases) nucleic acids as DNA probes for selective and sensitive individual electrochemical determination of Hg2+ and Ag+, respectively, on the multi-walled carbon nanotube paste electrodes (MWCNTPEs) using [Fe(CN)6]3?/4? as electroactive labels. In the presence of Hg2+ and Ag+, the probe–Hg2+/Ag+ interactions through T–Hg2+–T and C–Ag+–C complexes formation could cause the formation of a unimolecular hybridized probe. This structure of probe led to its partial depletion from electrode surface and facilitation of electron transfer between [Fe(CN)6]3?/4? redox couple and electrode surface, resulting in the enhanced differential pulse voltammetry (DPV) oxidation current of [Fe(CN)6]3?/4? at the probe-modified electrode surface. We applied the difference in the oxidation peak currents of [Fe(CN)6]3?/4? before and after Hg2+/Ag+–DNA probe bonding (?I) for electrochemical determination of these heavy metal ions. Detection limits were 8.0?×?10?12 M and 1.0?×?10?11 M for Hg2+ and Ag+ ions determination, respectively. The biosensors were utilized to determine the weight percent of toxic metals, i.e., silver and mercury in dental amalgam filling composition. The results of their practical applicability in analysis of the amalgam sample were satisfactory.  相似文献   

8.
Variations in the current in the [Fe(CN)6]3−/[Fe(CN)6]4− system flowing through a vertical microorifice in the insulating film on the electrode are shown. Steady- and nonsteady-state conditions of electrolysis are studied for different insulating film thicknesses. The obtained results suggest that at steady-state electrolysis, in an insulator channel, near the electrode, a “stagnant zone” is formed in which the natural convection of electrolyte is weak. Mass transfer in this zone preferentially occurs due to the reagent diffusion. The length of this zone increases with the increase in the channel length. A zone with the natural convection of electrolyte is located at a certain distance from the electrode, closer to the insulator surface. A part of this zone is located in the solution bulk and its thickness is independent of the channel length. The mass transfer in this zone is realized by both the reagent diffusion and the natural convection of electrolyte. Voltammetric measurements show that at sufficiently high potential scanning rates, the peak currents on a planar electrode and on an electrode placed on the bottom of the channel in the insulating film virtually coincide. This result points to the possibility of using potentiodynamic methods for analyzing the electrolyte composition inside the channel and in the solution bulk irrespective of the thickness of the electrode-insulating film.  相似文献   

9.
李建平  方成  顾海宁 《化学学报》2006,17(17):1812-1816
采用扫描电化学显微技术在玻碳电极表面沉积出K2Cu[Fe(CN)6]和K2Fe[Fe(CN)6]微阵, 并对所得的微阵结构进行了可视化表征. 铜微电极和镀铁铂微电极阳极化产生金属离子, 然后与玻碳电极(基底电极)上还原产生的[Fe(CN)6]4-在微区生成六氰合铁酸盐沉淀, 操纵探针以跳跃沉积方式可以得到沉淀的点阵结构. 通过改变K3[Fe(CN)6]的浓度和沉积时间可以调整沉淀斑的直径和厚度. 扫描电化学显微镜成像表明微阵结构对多巴胺的氧化和过氧化氢的还原有明显的电催化作用.  相似文献   

10.
This article aims to demonstrate an electrochemically stable and reliable gold electrode‐electrolyte system to develop an insect odorant receptor (Drosophila melanogaster Or35a) based bioelectronic nose. Cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS) of bare gold electrodes, after modification with the self‐assembled monolayer (SAM) of 6‐mercaptohexanoic acid (MHA) and after immobilization with Or35a integrated into the lipid bilayers of liposomes were conducted in the presence of four different redox probes. Potassium ferri/ferrocyanide [Fe(CN)6]3?/[Fe (CN)6]4? and hydroquinone (H2Q) redox probes revealed variable and irreversible signals at the time scale of our measurements, with atomic force microscopy (AFM) images and x‐ray photoelectron spectroscopy (XPS) results suggesting gold surface etching due to the presence of CN? ions in case of [Fe(CN)6]3?/[Fe (CN)6]4?. Although the hexaammineruthenium complex showed stable electrochemical behaviour at all stages of biosensor development, changes in CV and EIS readings after each surface modifications were insignificant. PBS buffer as a non‐Faradaic medium, was found to provide reliable systems for electrochemical probing of modified gold electrodes with Or35a/liposomes in aqueous media. Using this system, we have shown that this novel biosensor can detect its known odorant E2‐hexenal selectively compared to methyl salicylate down to femtomolar concentration.  相似文献   

11.
A selective DNA sensing with zeptomole detection level is developed based on coulometric measurement of gold nanoparticle (AuNPs)-mediated electron transfer (ET) across a self-assembled monolayer on the gold electrode. After immobilization of a thiolated hairpin-structured DNA probe, an alkanethiol monolayer was self-assembled on the resultant electrode to block [Fe(CN)6 ]-3-/4in a solution from accessing the electrode. In the presence of DNA target, hybridization between the DNA probe and the DNA target breaks the stem duplex of DNA probe. Consequently, stem moiety at the 3′-end of the DNA probes was removed from the electrode surface and made available for hybridization with the reporter DNA-AuNPs conjugates (reporter DNA-AuNPs). The thiolated reporter DNA matches the stem moiety at the 3′-end of the DNA probe. AuNPs were then enlarged by immersing the electrode in a growth solution containing HAuCl 4 and H2O2 after the reporter DNA-AuNPs bound onto the electrode surface. The enlarged AuNPs on the electrode restored the ET between the electrode and the [Fe(CN)6]3 -/4- , as a result, amplified signals were achieved for DNA target detection using the coulometric measurement of Fe(CN)6 3- electro-reduction by prolonging the electrolysis time. The quantities of ET on the DNA sensor increased with the increase in DNA target concentration through a linear range of 3.0 fM to 1.0 pM when electrolysis time was set to 300 s, and the detection limit was 1.0 fM. Correspondingly, thousands of DNA (zeptomole) copies were detected in 10L samples. Furthermore, the DNA sensor showed excellent differentiation ability for single-base mismatch.  相似文献   

12.
Aqueous redox flow batteries (ARFBs) are a promising technology for grid-scale energy storage, however, their commercial success relies on redox-active materials (RAM) with high electron storage capacity and cost competitiveness. Herein, a redox-active material lithium ferrocyanide (Li4[Fe(CN)6]) is designed. Li+ ions not only greatly boost the solubility of [Fe(CN)6]4− to 2.32 M at room temperature due to weak intermolecular interactions, but also improves the electrochemical performance of [Fe(CN)6]4−/3−. By coupling with Zn, ZIRFBs were built, and the capacity of the batteries was as high as 61.64 Ah L−1 (pH-neutral) and 56.28 Ah L−1 (alkaline) at a [Fe(CN)6]4− concentration of 2.30 M and 2.10 M. These represent unprecedentedly high [Fe(CN)6]4− concentrations and battery energy densities reported to date. Moreover, benefiting from the low cost of Li4[Fe(CN)6], the overall chemical cost of alkaline ZIRFB is as low as $11 per kWh, which is one-twentieth that of the state-of-the-art VFB ($211.54 per kWh). This work breaks through the limitations of traditional electrolyte composition optimization and will strongly promote the development of economical [Fe(CN)6]4−/3−-based RFBs in the future.  相似文献   

13.
The kinetics of the Fe(CN)63?/Fe(CN)64? redox reaction on a polycrystalline gold electrode in KF solutions was studied by the potential step method. It was found that the apparent rate constant of this reaction changes approximately linearly with the KF concentration and that the apparent charge-transfer coefficient is a linear function of the electrode potential. The experimental results, which were analyzed considering the formation of ion pairs between the reactant and potassium cations and also considering the effect of the double layer can be interpreted on the basis of the quantum theory of the electron-transfer reaction through a bridge activated complex. The value of the reorganization energy of the classic subsystem λ=(0.47±0.06) eV calculated from our results is comparable with the λ value derived from the results of other authors.  相似文献   

14.
《Electroanalysis》2006,18(16):1627-1630
The surface of a gold (Au) electrode was coated with layer‐by‐layer (LbL) thin films composed of poly(vinyl sulfate) (PVS) and different type of poly(amine)s including poly(allylamine) (PAH), poly(ethyleneimine) (PEI) and poly(diallyldimethylammonium chloride) (PDDA) and redox properties of ferricyanide ion ([Fe(CN)6]3?) on the LbL film‐coated Au electrodes were studied. The LbL film‐coated electrodes exhibited redox response to [Fe(CN)6]3? ion when the outermost surface of the LbL film was covered with the cationic poly(amine)s while virtually no response was observed on the LbL film‐coated electrodes whose outermost surface was covered with PVS due to an electrostatic repulsion between [Fe(CN)6]3? ion and the negatively‐charged PVS layer. The redox properties of [Fe(CN)6]3? ion on the LbL film‐coated electrodes significantly depended on the type of polycationic materials in the LbL film. The LbL film‐coated electrodes which had been immersed in the [Fe(CN)6]3? solution for 15 min exhibited redox response even in a [Fe(CN)6]3? ion‐free buffer solution, suggesting that [Fe(CN)6]3? ion is confined in the films. In the buffer solution, redox peaks were observed between +0.1 and 0.4 V depending on the type of polycations in the film. Thus, [Fe(CN)6]3? ion can be confined in the film and the redox potential is polycation‐dependent.  相似文献   

15.
A rapid method for the electroanalysis of ethanol is presented that incorporates flow extraction at room temperature, with voltammetric detection and potassium ferrocyanide [K4Fe(CN)6] as internal standard. In 0.1 M NaOH electrolyte, ethanol was oxidised at a platinum comb-shaped working electrode at −300 mV (vs. a Ag/AgCl reference electrode) and K4Fe(CN)6 was oxidized at +180 mV. The ratio of the anodic peak currents was linear with ethanol concentration in the range of 0.1 to 8.0% (v./v.), and the detection limit (calculated as 3 σ background) was 0.012 % (v./v.) for Osteryoung square wave voltammetry (OSWV) and 0.023 %(v./v.) for cyclic voltammetry (CV). The average extraction efficiency of ethanol from aqueous solutions, at 20 ± 1°C, was 8.5%. The repeatability was in the range of 2.5 to 3.3% RSD (n = 8), and accuracy was in the range of 95.2 to 104.7% for the determination of wine samples. Application to wines compared well with GC and HPLC methods and the nominal ethanol concentration determined by gravimetry. Analytical parameters in CV and OSWV are optimized, and the dependence of the extraction efficiency with temperature and nitrogen gas flow is presented.  相似文献   

16.
采用直接混合法制得平均尺寸小于50 nm的六氰合铁酸钴纳米粒子,元素分析表明其计量学分子式为K0.2Co1.4[Fe(CN)6]•xH2O,红外光谱证明此物质是由铁磁性的CoII1.5[FeIII(CN)6]和反铁磁性的KCoIII[FeII(CN)6]组成,并含有一定量的结晶水。用六氰合铁酸钴纳米粒子修饰的玻碳电极具有良好的稳定性和可逆的循环伏安行为,其电化学特征受溶液中配对阳离子种类和支持电解质浓度的影响。作为电极表面的媒介体,该薄膜对多巴胺的氧化还原具有电催化作用。  相似文献   

17.
Zusammenfassung Es wurden die elektrochemischen Eigenschaften des Redox-Systems K4[Fe(CN)6]-K3[Fe(CN)6] in Ameisensäure-Wasser-, Essigsäure-Wasser-, Propionsäure-Wasser- und n-Buttersäure-Wasser-Gemischen untersucht. Die Veränderungen des Redoxpotentials, der Leitfähigkeit und der Dielektrizitäts-konstante wurden studiert.Es wurde bewiesen, daß die Potentialveränderung des Redox-Systems bei kleiner Säurekonzentration (n s<0,6–0,7) vor allem durch die Wasserstoffionen-Konzentration der Lösung bestimmt wird. Mit der Zunahme der H+-Konzentration nimmt die Aktivität des [Fe(CN)6]4– in größerem Maße ab als die des [Fe(CN)6]3–.Bei großer Säurekonzentration beeinflußt dagegen hauptsächlich die Anionsolvatation durch das Lösungsmittelgemisch die Verschiebung des Redoxpotentials. Die Solvatation ruft eine Strukturveränderung hervor, wodurch die Elektronen-population der Lösungsmittelmoleküle in der Nähe der Cyanoferrat-Ionen abnimmt, die Elektronen-Acceptor-Wirkung des Lösungsmittels wächst. Dieser Prozeß bewirkt in bekannter Weise die Zunahme des Redoxpotentials.
The electrochemical behaviour of redox systems in mixed solvents, II.: TheK 4[Fe(CN) 6]-K 3[Fe(CN) 6] system in fatty acid-water mixtures
The electrochemical behaviour of the K4[Fe(CN)6]-K3[Fe(CN)6] system has been investigated in mixtures of water with formic, acetic, propionic and n-butyric acid, resp. The change of the redox potential, the conductivity and the dielectric constant has been studied. It has been proved that the change of the redox potential of the system at low acid concentration (n s<0.6–0.7) is determined by the H+ concentration. Increasing the H+ concentration, the activity of the [Fe(CN)6]4– decreases in a higher extent than the activity of [Fe(CN)6]3–.On the other hand, at high acid concentration the shift in the redox potential is influenced first of all by the anion solvating effect of the solvent. The solvation causes such a change in the structure, that the electron population of the solvent molecules around the [Fe(CN)6]4– ions decreases, the acceptor strength of the solvent increases. It is well known that this process causes an increase in the redox potential.


Mit 7 Abbildungen  相似文献   

18.
A method for the kinetic determination of traces of hexacyanoferrate based on an oscillating chemical reaction is presented. In a Belousov-Zhabotinskii reaction system, by using a bromide ion-selective electrode, the amplitude decrease of the potentiometric oscillation is linearly proportional to the concentration of Fe(CN)3?6 [or Fe(CN)4?6] in the range 7 × 10?8?5 × 10?6 M. The relative standard deviation for 1 × 10?6 M Fe(CN)3?6 is 2.7% (n = 6). Cyclic voltammetry was applied to study the mechanism of the proposed system. The procedure was utilized to determine hexacyanoferrates in silver plating and photographic solutions.  相似文献   

19.
Summary The kinetics and mechanism of the system [FeHIDA-(OH)2]+5CN[Fe(CN)5OH+HIDA2–+OH (HIDA=N-(2-hydroxyethyl) (iminodiacetate) at pH=9.5±0.02, I=0.1 M and at 25±0.1°C have been studied spectrophotometrically at 395 nm ( max of [Fe(CN)5OH]3–]. The reaction has three distinguishable stages; the first is formation of [Fe(CN)5OH]3–, the second is conversion of [Fe(CN)5OH]3– into [Fe(CN)6]3–, and last is the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by the HIDA2– released in the first stage. The first stage shows variable-order dependence on cyanide concentration, unity at high cyanide concentration and zero at low cyanide concentration. The second stage exhibits first-order dependence on the concentration of [Fe(CN)5OH]3– as well as on cyanide. The reverse reaction between [Fe(CN)5OH]3– and HIDA2– is first-order in each of these species and inverse first-order in cyanide. On the basis of forward and reverse rate studies, a five-step mechanism has been proposed for the first stage. The first step involves a slow loss of one OH, by a cyanide-independent path.  相似文献   

20.
The electrochemical behavior of K3[Fe(CN)6] was studied on an ITO electrode that was coated with β‐cyclodextrin (CD) modified multi‐walled carbon nanotubes (MWNTs) and with carboxyl modified multi‐walled carbon nanotubes (MWNT‐COOHs). MWNT‐COOHs showed an excellent electrocatalytic effect on the redox of K3[Fe(CN)6] while MWNT‐CDs had a subdued effect on the electrochemical response of K3[Fe(CN)6]. It is probably due to mismatching between K3[Fe(CN)6] and cyclodextrin, which hampers the contact of K3[Fe(CN)6] with carbon nanotubes. Moreover, the electrochemical behavior of K3[Fe(CN)6] on the MWNT‐COOHs coated ITO electrode at various scan rates also was measured. The results indicated that both potential difference between redox peaks and peak current of K3[Fe(CN)6] increased with increasing scan rate. A good linearity of peak current versus scan rate was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号