首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the twigs of Amoora stellato‐squamosa, five new neoclerodane diterpenes have been isolated and characterized, methyl (13E)‐2‐oxoneocleroda‐3,13‐dien‐15‐oate (=methyl (2E)‐3‐methyl‐5‐[(1S,2R,4aR,8aR)‐1,2,3,4,4a,7,8,8a‐octahydro‐1,2,4a,5‐tetramethyl‐7‐oxo‐naphthalen‐1‐yl]pent‐2‐enoate; 1 ), (13E)‐2‐oxoneocleroda‐3,13‐dien‐15‐ol (=(4aR,7R,8S,8aR)‐1,2,4a,5,6,7,8,8a‐octahydro‐8‐[(E)‐5‐hydroxy‐3‐methylpent‐3‐enyl]‐4,4a,7,8‐tetramethylnaphthalen‐2(1H)‐one; 2 ), (3α,4β,13E)‐neoclerod‐13‐ene‐3,4,15‐triol (=(1R,2R,4aR, 5S,6R,8aR)‐decahydro‐5‐[(E)‐5‐hydroxy‐3‐methylpent‐3‐enyl]‐1,5,6,8a‐tetramethylnaphthalene‐1,2‐diol; 3 ), (3α,4β,13E)‐4‐ethoxyneoclerod‐13‐ene‐3,15‐diol (=(1R,2R,4aR,5S,6R,8aR)‐1‐ethoxydecahydro‐5‐[(E)‐5‐hydroxy‐3‐methylpent‐3‐enyl]‐1,5,6,8a‐tetramethylnaphthalen‐2‐ol; 4 ), and (3α,4β,14RS)‐neoclerod‐13(16)‐ ene‐3,4,14,15‐tetrol (=(1R,2R,4aR,5S,6R,8aR)‐decahydro‐5‐[3‐(1,2‐dihydroxyethyl)but‐3‐enyl]‐1,5,6,8a‐tetramethylnaphthalene‐1,2‐diol; 5 ), together with two known compounds, (13E)‐neocleroda‐3,13‐diene‐15,18‐diol ( 6 ) and (13S)‐2‐oxoneocleroda‐3,14‐dien‐13‐ol ( 7 ).  相似文献   

2.
A new, non‐iterative method for the asymmetric synthesis of long‐chain and polycyclic polypropanoate fragments starting from 2,2′‐ethylidenebis[3,5‐dimethylfuran] ( 2 ) has been developed. Diethyl (2E,5E)‐4‐oxohepta‐2,5‐dienoate ( 6 ) added to 2 to give a single meso‐adduct 7 containing nine stereogenic centers. Its desymmetrization was realized by hydroboration with (+)‐IpcBH2 (isopinocampheylborane), leading to diethyl (1S,2R,3S,4S,4aS,7R,8R,8aR,9aS,10R,10aR)‐1,3,4,7,8,8a,9,9a‐octahydro‐3‐hydroxy‐2,4,5,7,10‐pentamethyl‐9‐oxo‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐1,8‐dicarboxylate ((+)‐ 8 ; 78% e.e.). Alternatively, 7 was converted to meso‐(1R,2R,4R,4aR,5S,7S,8S,8aR,9aS,10s,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐2,4,5,7,10‐pentamethyl‐2H‐10H‐2,4a : 7,10a‐diepoxyanthracene‐3,6,9(4H,5H,7H)‐trione ( 32 ) that was reduced enantioselectively by BH3 catalyzed by methyloxazaborolidine 19 derived from L ‐diphenylprolinol giving (1S,2S,4S,4aS,5S,6R,7R,8R,8aS,9aR,10R,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐6‐hydroxy‐2,4,5,7,10‐pentamethyl‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐3,9(4H,7H)‐dione ((−)‐ 33 ; 90% e.e.). Chemistry was explored to carry out chemoselective 7‐oxabicyclo[2.2.1]heptanone oxa‐ring openings and intra‐ring C−C bond cleavage. Polycyclic polypropanoates such as (1R,2S,3R,4R,4aR,5S,6R,7S,8R,9R,10R,11S,12aR)‐1‐(ethoxycarbonyl)‐1,3,4,7,8,9,10,11,12,12a‐decahydro‐3,11‐dihydroxy‐2,4,5,7,9‐pentamethyl‐12‐oxo‐2H,5H‐2,4a : 6,9 : 6,11‐triepoxybenzocyclodecene‐10,8‐carbolactone ( 51 ), (1S,2R,3R,4R,4aS,5S,7S,8R,9R,10R,12S,12aS)‐1,10‐bis(acetoxymethyl)tetradecahydro‐8‐(methoxymethoxy)‐2,4,5,7,9‐pentamethyl‐3,9‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}‐6,11‐epoxycyclodecene‐4a,6,11,12‐tetrol ((+)‐ 83 ), and (1R,2R,3R,4aR,4bR,5S,6R, 7R,8R,8aS,9S,10aR)‐3,5‐bis(acetoxymethyl)‐4a,8a‐dihydroxy‐1‐(methoxymethoxy)‐2,6,8,9,10a‐pentamethyl‐2,7‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}dodecahydrophenanthrene‐4,10‐dione ( 85 ) were obtained in few synthetic steps.  相似文献   

3.
The hexopyranosid‐2‐ylidenemalononitrile 1 reacted with phenyl isothiocyanate in the presence of triethylamine to furnish (2R,4aR,6S,10bS)‐8‐amino‐4a,6,10,10b‐tetrahydro‐6‐methoxy‐2‐phenyl‐10‐phenylimino‐4H‐thiopyrano[3′,4′:4,5]pyrano[3,2‐d][1,3]dioxine‐7‐carbonitrile (2). Starting from 1, cyclization with sulphur and diethylamine yielded (2R,4aR,6S,9bR)‐8‐amino‐4,4a,6,9b‐tetrahydro‐6‐methoxy‐2‐phenylthieno[2′,3′:4,5]pyrano[3,2‐d][1,3]dioxine‐7‐carbonitrile (3), which could be transformed into the corresponding aminomethylenamino derivative 4 by treatment with triethyl orthoformate and ammonia. Intramolecular cyclization of 4 to yield (2R,4aR,6S,11bR)‐4,4a,6,11b‐tetrahydro‐6‐methoxy‐2‐phenyl[1,3]dioxino[4″,5″:5′,6′]pyrano[3′,4′:4,5]thieno [2,3‐d]pyrimidin‐7‐amine (5) was achieved by using NaH as base. (2R,4aR,6S,9bS)‐8‐Amino‐4a,6,9,9b‐tetrahydro‐6‐methoxy‐9‐(4‐methylphenyl‐sulfonyl)‐2‐phenyl‐4H‐[1,3]dioxino[4′,5′:5,6]pyrano[4,3‐b]pyrrole‐7‐carbonitrile (6) was prepared by treatment of compound 1 with tosylazide and triethylamine.  相似文献   

4.
A novel dimeric lignan, bispicropodophyllin glucoside ( 1 ) and a highly oxygenated new withanolide, coagulin S ( 2 ) were isolated from the ethanolic extract of Withania coagulans. The structures were established on the basis of the spectroscopic data and have been identified as (5S*,5aR*,8aR*,9S*,15S*,15aS*,18aS*,19S*)‐9,19‐di‐β‐D ‐glucopyranosyl‐5,8a,9,15,15a,18,18a,19‐octahydro‐5,15‐bis(3,4,5‐trimethoxyphenyl)bis([1,3]dioxolo[4′,5′:6,7]naphtho)[2,3‐c:2,3‐h][1,6]dioxecin‐6,16(5aH,8H)‐dione ( 1 ) and (20S*,22R*)‐5α,6β,14α,15α,17β,20,27‐heptahydroxy‐1‐oxowith‐24‐enolide ( 2 ), respectively.  相似文献   

5.
The cross‐aldolization of (−)‐(1S,4R,5R,6R)‐6‐endo‐chloro‐5‐exo‐(phenylseleno)‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((−)‐ 25 ) and of (+)‐(3aR,4aR,7aR,7bS)‐ ((+)‐ 26 ) and (−)‐(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazole‐3‐carbaldehyde ((−)‐ 26 ) was studied for the lithium enolate of (−)‐ 25 and for its trimethylsilyl ether (−)‐ 31 under Mukaiyama's conditions (Scheme 2). Protocols were found for highly diastereoselective condensation giving the four possible aldols (+)‐ 27 (`anti'), (+)‐ 28 (`syn'), 29 (`anti'), and (−)‐ 30 (`syn') resulting from the exclusive exo‐face reaction of the bicyclic lithium enolate of (−)‐ 25 and bicyclic silyl ether (−)‐ 31 . Steric factors can explain the selectivities observed. Aldols (+)‐ 27 , (+)‐ 28 , 29 , and (−)‐ 30 were converted stereoselectively to (+)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aR,4aR,7aR,7bS)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]‐furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((+)‐ 62 ), its epimer at the exocyclic position (+)‐ 70 , (−)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((−)‐ 77 ), and its epimer at the exocyclic position (+)‐ 84 , respectively (Schemes 3 and 5). Compounds (+)‐ 62 , (−)‐ 77 , and (+)‐ 84 were transformed to (1R,2R,3S,7R,8S,9S,9aS)‐1,3,4,6,7,8,9,9a‐octahydro‐8‐[(1R,2R)‐1,2,3‐trihydroxypropyl]‐2H‐quinolizine‐1,2,3,7,9‐pentol ( 21 ), its (1S,2S,3R,7R,8S,9S,9aR) stereoisomer (−)‐ 22 , and to its (1S,2S,3R,7R,8S,9R,9aR) stereoisomer (+)‐ 23 , respectively (Schemes 6 and 7). The polyhydroxylated quinolizidines (−)‐ 22 and (+)‐ 23 adopt `trans‐azadecalin' structures with chair/chair conformations in which H−C(9a) occupies an axial position anti‐periplanar to the amine lone electron pair. Quinolizidines 21 , (−)‐ 22 , and (+)‐ 23 were tested for their inhibitory activities toward 25 commercially available glycohydrolases. Compound 21 is a weak inhibitor of β‐galactosidase from jack bean, of amyloglucosidase from Aspergillus niger, and of β‐glucosidase from Caldocellum saccharolyticum. Stereoisomers (−)‐ 22 and (+)‐ 23 are weak but more selective inhibitors of β‐galactosidase from jack bean.  相似文献   

6.
Phthalides are frequently found in naturally occurring substances and exhibit a broad spectrum of biological activities. In the search for compounds with insecticidal activity, phthalides have been used as versatile building blocks for the syntheses of novel potential agrochemicals. In our work, the Diels–Alder reaction between furan‐2(5H)‐one and cyclopentadiene was used successfully to obtain (3aR,4S,7R,7aS)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aS,4R,7S,7aR)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 2 ) and (3aS,4S,7R,7aR)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aR,4R,7S,7aS)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 3 ). The endo adduct ( 2 ) was brominated to afford (3aR,4R,5R,7R,7aS,8R)‐5,8‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aS,4S,5S,7S,7aR,8S)‐5,8‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 4 ) and (3aS,4R,5R,6S,7S,7aR)‐5,6‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aR,4S,5S,6R,7R,7aS)‐5,6‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 5 ). Following the initial analysis of the NMR spectra and the proposed two novel unforeseen products, we have decided to fully analyze the classical and non‐classical assay structures with the aid of computational calculations. Computation to predict the 13C and 1H chemical shifts for mean absolute error analyses have been carried out by gauge‐including atomic orbital method at M06‐2X/6‐31+G(d,p) and B3LYP/6‐311+G(2d,p) levels of theory for all viable conformers. Characterization of the novel unforeseen compounds ( 4 ) and ( 5 ) were not possible by employing only the experimental NMR data; however, a more conclusive structural identification was performed by comparing the experimental and theoretical 1H and 13C chemical shifts by mean absolute error and DP4 probability analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Three new natural products, a lignoid glycoside 1 and two dimeric phenylpropanoids 2 and 3 , along with two known lignans 4 and 5 , were isolated from the BuOH‐ and CHCl3‐soluble fractions of the whole plant of Daphne oleoides (Thymelaeaceae). The structures of the new compounds were established by spectroscopic techniques, including 2D NMR, as 4‐(β‐D ‐glucopyranosyloxy)‐9′‐hydroxy‐3,3′,4′‐trimethoxy‐7′,9‐epoxylignan ( 1 ), (1R,2S,5R,6R)‐6‐(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐2‐(4‐hydroxy‐3,5‐dimethoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 2 ) and (1R,2S,5R,6S)‐2,6‐bis(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 3 ). The other lignans were identified as (+)‐pinoresinol O‐(β‐D ‐glucopyranoside) ( 4 ) and (+)‐medioresinol ( 5 ).  相似文献   

8.
Three new compounds, including a benzofuran, 1‐{(2R*,3S*)‐3‐(β‐D ‐glucopyranosyloxy)‐2,3‐dihydro‐2‐[1‐(hydroxymethyl)vinyl]‐1‐benzofuran‐5‐yl}ethanone ( 1 ), a lignan, [(2S,3R,4R)‐4‐(3,4‐dimethoxybenzyl)‐2‐(3,4‐dimethoxyphenyl)tetrahydrofuran‐3‐yl]methyl (2E)‐2‐methylbut‐2‐enoate ( 2 ), and a silphiperfolene‐type sesquiterpene, [(1S,2Z,3aS,5aS,6R,8aR)‐1,3a,4,5,5a,6,7,8‐octahydro‐1,3a,6‐trimethylcyclopenta[c]pentalen‐2‐yl]methyl acetate ( 3 ), together with the known coumarins obliquin ( 4 ) and its 5‐methoxy derivative 5 were isolated from the roots of Leontopodium alpinum. Another known coumarin derivative, 5‐hydroxyobliquin ( 6 ), was isolated from the roots of L. leontopodioides. The structures of these compounds were established by spectroscopic studies.  相似文献   

9.
A phytochemical investigation of the MeOH extract of Valeriana fauriei Briq . roots resulted in the isolation of two new sesquiterpenes, isovalerianin A (=(1β,4Z,6β,8α)‐8‐(acetyloxy)‐1,10‐dihydroxy‐6,11‐cyclogermacr‐4‐en‐15‐al=rel‐(1R,2Z,6S,7R,9R,10S)‐9‐(acetyloxy)‐6,7‐dihydroxy‐7,11,11‐trimethylbicyclo[8.1.0]undec‐2‐ene‐3‐carboxaldehyde; 1 ) and valerianin C (=(2α,3α,6α,8α)‐3‐(acetyloxy)‐2,4,8‐trihydroxyguai‐1(10)‐ene‐12,6‐lactone=rel‐(3R,3aS,4R,7S,8S,9R,9aR,9bR)‐8‐(acetyloxy)‐3a,4,5,7,8,9,9a,9b‐ octahydro‐4,7,9‐trihydroxy‐3,6,9‐trimethylazuleno[4,5‐b]furan‐2(3H)‐one; 2 ), together with six known compounds, i.e., camphor, methyl 4‐hydroxybenzoate, 2‐methoxybenzoic acid, benzoic acid, quercetin, and kaempferol. The structures of the compounds were established by detailed spectral analysis and comparison with previously reported data.  相似文献   

10.
Wei Huang  Jun‐Da Cen 《合成通讯》2013,43(13):2153-2157
A novel convenient synthesis of the hypoglycemic agent mitiglinide was developed. (2S)‐4‐[(3aR,7aS)‐Octahydro‐2H‐isoindol‐2‐yl]‐4‐oxo‐2‐benzyl‐butanoic acid (6) was prepared by selective hydrolysis of ethyl 4‐[(3aR,7aS)‐octahydro‐2H‐isoindol‐2‐yl]‐4‐oxo‐2‐benzyl‐butanoate (5) using α‐chymotrypsin; the latter was prepared by a novel facile route from (3aR,7aS)‐octahydro‐2H‐isoindole. The overall yield was 25.6%.  相似文献   

11.
The syntheses of two 2′,3′‐fused bicyclic nucleoside analogues, i.e., 1‐[(4aR,5R,7R,7aS)‐hexahydro‐5‐(hydroxymethyl)‐4,4‐dioxidofuro[3,4‐b][1,4]oxathiin‐7‐yl]pyrimidine‐2,4(1H,3H)‐dione ( 1a ) and 1‐[(4aS,5R,7R,7aS)‐hexahydro‐7‐(hydroxymethyl)‐1,1‐dioxido‐2H‐furo[3,4‐b][1,4]thiazin‐5‐yl]pyrimidine‐ 2,4(1H,3H)‐dione ( 1b ), are described, the key step being an intramolecular hetero‐Michael addition. Their structures and conformations, previously solved by X‐ray crystallography, were analyzed in more detail, using 1D‐ and 2D‐NMR as well as HR‐MS analyses.  相似文献   

12.
The chemical synthesis of deuterated isomeric 6,7‐dihydroxydodecanoic acid methyl esters 1 and the subsequent metabolism of esters 1 and the corresponding acids 1a in liquid cultures of the yeast Saccharomyces cerevisiae was investigated. Incubation experiments with (6R,7R)‐ or (6S,7S)‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid methyl ester ((6R,7R)‐ or (6S,7S)‐(6,7‐2H2)‐ 1 , resp.) and (±)‐threo‐ or (±)‐erythro‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid ((±)‐threo‐ or (±)‐erythro‐(6,7‐2H2)‐ 1a , resp.) elucidated their metabolic pathway in yeast (Tables 1–3). The main products were isomeric 2H‐labeled 5‐hydroxydecano‐4‐lactones 2 . The absolute configuration of the four isomeric lactones 2 was assigned by chemical synthesis via Sharpless asymmetric dihydroxylation and chiral gas chromatography (Lipodex ® E). The enantiomers of threo‐ 2 were separated without derivatization on Lipodex ® E; in contrast, the enantiomers of erythro‐ 2 could be separated only after transformation to their 5‐O‐(trifluoroacetyl) derivatives. Biotransformation of the methyl ester (6R,7R)‐(6,7‐2H2)‐ 1 led to (4R,5R)‐ and (4S,5R)‐(2,5‐2H2)‐ 2 (ratio ca. 4 : 1; Table 2). Estimation of the label content and position of (4S,5R)‐(2,5‐2H2)‐ 2 showed 95% label at C(5), 68% label at C(2), and no 2H at C(4) (Table 2). Therefore, oxidation and subsequent reduction with inversion at C(4) of 4,5‐dihydroxydecanoic acid and transfer of 2H from C(4) to C(2) is postulated. The 5‐hydroxydecano‐4‐lactones 2 are of biochemical importance: during the fermentation of Streptomyces griseus, (4S,5R)‐ 2 , known as L‐factor, occurs temporarily before the antibiotic production, and (?)‐muricatacin (=(4R,5R)‐5‐hydroxy‐heptadecano‐4‐lactone), a homologue of (4R,5R)‐ 2 , is an anticancer agent.  相似文献   

13.
Three new eremophilane‐type sesquiterpenes, (6β,8α)‐6‐(acetyloxy)‐8‐hydroxyeremophil‐7(11)‐en‐12,8‐olide ( 1 ), (6α,8α)‐6‐hydroxyeremophil‐7(11)‐en‐12,8‐olide ( 2 ), and (6α,8α)‐6‐(acetyloxy)eremophil‐7(11)‐en‐12,8‐olide ( 3 ) ((8α)‐eremophil‐7(11)‐en‐12,8‐olide = (4aR,5S,8aR,9aS)‐4a,5,6,7,8,8a,9,9a‐octahydro‐3,4a,5‐trimethylnaphtho[2,3‐b]furan‐2(4H)‐one), besides the recently elucidated eremoligularin ( 4 ) and bieremoligularolide ( 5 ), as well as a new highly oxygenated monoterpene, rel‐(1R,2R,3R,4S,5S)‐p‐menthane‐1,2,3,5‐tetrol ( 12 ), together with six known constituents, i.e., the sesquiterpenes 6 and 7 , the norsesquiterpenes 8 – 10 , and the monoterpene 13 , were isolated from the roots of Ligularia muliensis. In addition, an attempt to dimerize 1 to a bieremophilenolide (Scheme) resulted in the generation of the new derivative (6β,8β)‐6‐(acetyloxy)‐8‐chloroeremophil‐7(11)‐en‐12,8‐olide ( 11 ). The new structures were established by means of detailed spectroscopic analysis (IR, FAB‐, EI‐, or HR‐ESI‐MS as well as 1D‐ and 2D‐NMR experiments). Compounds 4 and 5 were evaluated for their antitumor effects in vitro (Table 3).  相似文献   

14.
The photooxygenation of (4R,4aS,7R)-4,4a,5,6,7,8-hexahydro-4,7-dimethyl-3H-2-benzopyran ( 16 ) was performed in (i) MeOH, (ii) acetaldehyde, and (iii) acetone at ?78°. The products obtained respectively were (i) (2R)-2-[(1S,4R)-4-methyl-2-oxocyclohexyl]propyl formate ( 17 ; 72% yield), (ii) 17 (54.5%), (1R,4R,4aS,7R)-3,4,4a,5,6,7-hexahydro-4,7-dimethyl-1H-2-benzopyran-2-yl hydroperoxide ( 19 ; 16.7%), a 12:1 ratio of (3R,4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,7,10-trimethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4-trioxane ( 20 ) and its C(3)-epimer 21 (17%), together with evidence for the 1,2-dioxetane ( 22 ) originating from the addition of dioxygen to the re-re face of the double bond of 16 , and iii) unidentified products and traces of 22 . Addition of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) to the acetone solution of 16 after photooxygenation afforded (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4,-trioxane ( 23 , 40%). The photooxygenation of 16 in CH2Cl2 at ?78° followed by addition of acetone and Me3SiOTf afforded 17 (11%), 23 (59%), and (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[8a,1-e]-1,2,4-trioxane ( 24 ; 5%. Repetition of the last experiment, but replacing acetone by cyclopentanone, gave 17 (16%), (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[1,8a-e]-1,2,4-trixane] ( 25 ; 61%), and (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[8a,1-e]-1,2,4-trixane] ( 26 , 4%). The X-ray analysis of 23 was performed, which together with the NMR data, established the structure of the trioxanes 20, 21, 24, 25 , and 26 . Mechanistic and synthesis aspects of these reactions were discussed in relation to the construction of the 1,2,4-trioxane ring in arteannuin and similar molecules.  相似文献   

15.
The chiral compounds (6aS,9S,10aR)‐11,11‐dimethyl‐5,5‐dioxo‐2,3,8,9‐tetrahydro‐6H‐6a,9‐methanooxazaolo[2,3‐i][2,1]benzisothiazol‐10(7H)‐one, C12H17NO4S, (1), (7aS,10S,11aR)‐12,12‐dimethyl‐6,6‐dioxo‐3,4,9,10‐tetrahydro‐7H‐7a,10‐methano‐2H‐1,3‐oxazino[2,3‐i][2,1]benzisothiazol‐11(8H)‐one, C13H19NO4S, (2), (6aS,9S,10R,10aR)‐11,11‐dimethyl‐5,5‐dioxo‐2,3,7,8,9,10‐hexahydro‐6H‐6a,9‐methanooxazolo[2,3‐i][2,1]benzisothiazol‐10‐ol, C12H19NO4S, (3), and (7aS,10S,11R,11aR)‐12,12‐dimethyl‐6,6‐dioxo‐3,4,8,9,10,11‐hexahydro‐7H‐7a‐methano‐2H‐[1,3]oxazino[2,3‐i][2,1]benzisothiazol‐11‐ol, C13H21NO4S, (4), consist of a camphor core with a five‐membered spirosultaoxazolidine or six‐membered spirosultaoxazine, as both their keto and hydroxy derivatives. In each structure, the molecules are linked via hydrogen bonding to the sulfonyl O atoms, forming chains in the unit‐cell b‐axis direction. The chains interconnect via weak C—H...O interactions. The keto compounds have very similar packing but represent the highest melting [507–508 K for (1)] and lowest melting [457–458 K for (2)] solids.  相似文献   

16.
A low‐temperature structure of ginkgolide A monohydrate, (1R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11aS)‐3‐(1,1‐dimethylethyl)‐hexa­hydro‐4,7b‐di­hydroxy‐8‐methyl‐9H‐1,7a‐epoxymethano‐1H,6aH‐cyclo­penta­[c]­furo­[2,3‐b]­furo­[3′,2′:3,4]­cyclopenta­[1,2‐d]­furan‐5,9,12(4H)‐trione monohydrate, C20H24O9·H2O, obtained from Mo Kα data, is a factor of three more precise than the previous room‐temperature determination. A refinement of the ginkgolide A monohydrate structure with Cu Kα data has allowed the assignment of the absolute configuration of the series of compounds. Ginkgolide C sesquihydrate, (1S,2R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11S,11aR)‐3‐(1,1‐di­methyl­ethyl)‐hexa­hydro‐2,4,7b,11‐tetrahydroxy‐8‐methyl‐9H‐1,7a‐epoxy­methano‐1H,6aH‐cyclopenta­[c]­furo­[2,3‐b]­furo­[3′,2′:3,4]­cyclo­penta­[1,2‐d]­furan‐5,9,12(4H)‐trione sesquihydrate, C20H24O11·1.5H2O, has two independent diterpene mol­ecules, both of which exhibit intramolecular hydrogen bonding between OH groups. Ginkgolide J dihydrate, (1S,2R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11aS)‐3‐(1,1‐di­methyl­ethyl)‐hexa­hydro‐2,4,7b‐tri­hydroxy‐8‐methyl‐9H‐1,7a‐epoxy­methano‐1H,6aH‐cyclo­penta­[c]­furo­[2,3‐b]furo[3′,2′:3,4]­cyclo­penta­[1,2‐d]­furan‐5,9,12(4H)‐trione dihydrate, C20H24O10·2H2O, has the same basic skeleton as the other ginkgolides, with its three OH groups having the same configurations as those in ginkgolide C. The conformations of the six five‐membered rings are quite similar across ­ginkgolides A–C and J, except for the A and F rings of ginkgolide A.  相似文献   

17.
The title compound, methyl (2aS,3R,5R,5aS,6S,6aS,8R,9aS,10aR,10bR,10cS)‐8‐(3‐furyl)‐2a,4,5,5a,6,6a,8,9,9a,10a,10b,10c‐dodeca­hydro‐3‐hydroxy‐2a,5a,6a,7‐tetra­methyl‐5‐(3‐methylbut‐2‐enoyl­oxy)‐2H,3H‐cyclo­penta­[4′,5′]­furo­[2′,3′:6,5]benzo[cd]­isobenzo­furan‐6‐acetate, C32H42O8, was isolated from uncrushed green leaves of Azadirachta indica A. Juss (neem) and has been found to possess antifeedant activity against Spodptera litura. The conformations of the functional groups are similar to those of 3‐des­acetyl­salannin, which was isolated from neem kernels. The mol­ecules are linked into chains by intermolecular O—H?O hydrogen bonds.  相似文献   

18.
The push‐pull activated methyl (3Z)‐4,6‐O‐benzylidene‐3‐[(methylthio)methylene]‐3‐deoxy‐α‐D‐erythro‐hexopyranosid‐2‐ulose (1) reacted with dialkyl malonate in the presence of potassium carbonate to give the alkyl (2R,4aR,6S,10bS)‐4a,6,8,10b‐tetrahydro‐6‐methoxy‐8‐oxo‐2‐phenyl‐4H‐pyrano[3′,2′:4,5]pyrano[3,2‐d][1,3]dioxine‐9‐carboxylates 2 and 3. Treatment of 1 with 3‐oxo‐N‐phenyl‐butyramide, N‐(4‐methoxy‐phenyl)‐3‐oxo‐butyramide, and 3‐oxo‐No‐tolyl‐butyramide, respectively, in the presence of potassium carbonate and 18‐crown‐6 yielded the (2R,4aR,6S,10bS)‐9‐acetyl‐7‐aryl‐4,4a,7,10b‐tetrahydro‐6‐methoxy‐2‐phenyl[1,3]dioxino‐[4′,5′:5,6]pyrano[3,4‐b]pyridin‐8(6H)‐ones 46. (2R,4aR,6S,10bS)‐4,4a,8,10b‐Tetrahydro‐6‐methoxy‐8‐oxo‐2‐phenyl‐4H‐pyrano[3′,2′:4,5]pyrano[3,2‐d][1,3]dioxine‐9‐carboxamide (7) was prepared by anellation reactions of 1 either with malononitrile or with cyanoacetamide.  相似文献   

19.
The absolute configuration of decipinone ( 2 ), a myrsinane‐type diterpene ester previously isolated from Euphorbia decipiens, has been determined by NMR study of its axially chiral derivatives (aR)‐ and (aS)‐N‐hydroxy‐2′‐methoxy‐1,1′‐binaphthalene‐2‐carboximidoyl chloride ((aR)‐MBCC ( 3a ) and (aS)‐MBCC ( 3b )). The absolute configurations at C(7) and C(13) of 2 determined were (R) and (S), respectively. Therefore, considering the relative configuration of 2 , the absolute configuration determined was (2S,3S,4R,5R,6R,7R,11S,12R,13S,15R).  相似文献   

20.
The title compounds, (3R,5S,5′R,8R,9S,10S,13S,14S)‐10,13‐dimethyl‐5′‐(2‐methylpropyl)tetradecahydro‐6′H‐spiro[cyclopenta[a]phenanthrene‐3,2′‐[1,4]oxazinane]‐6′,17(2H)‐dione, C26H41NO3, (I), and methyl (2R)‐2‐[(3R,5S,8R,9S,10S,13S,14S)‐10,13‐dimethyl‐2′,17‐dioxohexadecahydro‐3′H‐spiro[cyclopenta[a]phenanthrene‐3,5′‐[1,3]oxazolidin‐3′‐yl]]‐4‐methylpentanoate, C28H43NO5, (II), possess the typical steroid shape (AD rings), but they differ in their extra E ring. The azalactone E ring in (I) shows a half‐chair conformation, while the carbamate E ring of (II) is planar. The orientation of the E‐ring substituent is clearly established and allows a rationalization of the biological results obtained with such androsterone derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号