首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vortex methods have found wide applications in various practical problems. The use of vortex methods in free surface flow problems, however, is still very limited. This paper demonstrates a vortex method for practical computation of non-linear free surface flows produced by moving bodies. The method is a potential flow formulation which uses the exact non-linear free surface boundary condition at the exact location of the instantaneous free surface. The position of the free surface, on which vortices are distributed, is updated using a Lagrangian scheme following the fluid particles on the free surface. The vortex densities are updated by the non-linear dynamic boundary condition, derived from the Euler equations, with an iterative Lagrangian numerical scheme. The formulation is tested numerically for a submerged circular cylinder in unsteady translation. The iteration is shown to converge for all cases. The results of the unsteady simulations agree well with classical linearized solutions. The stability of the method is also discussed.  相似文献   

3.
A two‐dimensional multi‐phase model for immiscible binary fluid flow including moving immersed objects is presented. The fluid motion is described by the incompressible Navier–Stokes equation coupled with a phase‐field model based on van der Waals' free energy density and the Cahn–Hilliard equation. A new phase‐field boundary condition was implemented with minimization of the free energy in a direct way, to specifically improve the physical behavior of the contact line dynamics for moving immersed objects. Numerical stability and execution time were significantly improved by the use of the new boundary condition. Convergence toward the analytical solution was demonstrated for equilibrium contact angle, the Lucas–Washburn theory and Stefan's problem. The proposed model may be used for multi‐phase flow problems with moving boundaries of complex geometry, such as the penetration of fluid into a deformable, porous medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The local domain‐free discretization method is extended in this work to simulate fluid–structure interaction problems, the class of which is exemplified by the self‐propelled anguilliform swimming of deforming bodies in a fluid medium. Given the deformation of the fish body in its own reference frame, the translational and rotational motions of the body governed by Newton's Law are solved together with the surrounding flow field governed by Navier–Stokes equations. When the body is deforming and moving, no mesh regeneration is required in the computation. The loose coupling strategy is employed to simulate the fluid–structure interaction involved in the self‐propelled swimming. The local domain‐free discretization method and an efficient algorithm for classifying the Eulerian mesh points are described in brief. To validate the fluid–structure interaction solver, we simulate the ‘lock‐in’ phenomena associated with the vortex‐induced vibrations of an elastically mounted cylinder. Finally, we demonstrate applications of the method to two‐dimensional and three‐dimensional anguilliform‐swimming fish. The kinematics and dynamics associated with the center of mass are shown and the rotational movement is also presented via the angular position of the body axis. The wake structure is visualized in terms of vorticity contours. All the obtained numerical results show good agreement with available data in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we describe an SPH algorithm for multi‐fluid flow, which is efficient, simple and robust. We derive the inviscid equations of motion from a Lagrangian together with the constraint provided by the continuity equation. The viscous flow equations then follow by adding a viscous term. Rigid boundaries are simulated using boundary force particles in a manner similar to the immersed boundary method. Each fluid is approximated as weakly compressible with a speed of sound sufficiently large to guarantee that the relative density variations are typically 1%. When the SPH force interaction is between two particles of different fluids, we increase the pressure terms. This simple procedure stabilizes the interface between the fluids. The equations of motion are integrated using a time stepping rule based on a second‐order symplectic integrator. When linear and angular momentum should be conserved exactly, they are conserved to within round‐off errors. We test the algorithm by simulating a variety of problems involving fluids with a density ratio in the range 1–1000. The first of these is a free surface problem with no rigid boundaries. It involves the flow of an elliptical distribution with one fluid inside the other. We show that the simulations converge as the particle spacing decreases, and the results are in good agreement with the exact inviscid, incompressible theory. The second test is similar to the first but involves the nonlinear oscillation of the fluids. As in the first test, the agreement with theory is very good, and the method converges. The third test is the simulation of waves at the interface between two fluids. The method is shown to converge, and the agreement with theory is satisfactory. The fourth test is the Rayleigh–Taylor instability for a configuration considered by other authors. Key parameters are shown to converge, and the agreement with other authors is good. The fifth and final test is how well the SPH method simulates gravity currents with density ratios in the range 2–30. The results of these simulations are in very good agreement with those of other authors and in satisfactory agreement with experimental results.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A direct‐forcing pressure correction method is developed to simulate fluid–particle interaction problems. In this paper, the sedimentation flow is investigated. This method uses a pressure correction method to solve incompressible flow fields. A direct‐forcing method is introduced to capture the particle motions. It is found that the direct‐forcing method can also be served as a wall‐boundary condition. By applying Gauss's divergence theorem, the formulas for computing the hydrodynamic force and torque acting on the particle from flows are derived from the volume integral of the particle instead of the particle surface. The order of accuracy of the present method is demonstrated by the errors of velocity, pressure, and wall stress. To demonstrate the efficiency and capability of the present method, sedimentations of many spherical particles in an enclosure are simulated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A new stream function–vorticity formulation‐based immersed boundary method is presented in this paper. Different from the conventional immersed boundary method, the main feature of the present model is to accurately satisfy both governing equations and boundary conditions through velocity correction and vorticity correction procedures. The velocity correction process is performed implicitly based on the requirement that velocity at the immersed boundary interpolated from the corrected velocity field accurately satisfies the nonslip boundary condition. The vorticity correction is made through the stream function formulation rather than the vorticity transport equation. It is evaluated from the firstorder derivatives of velocity correction. Two simple and efficient ways are presented for approximation of velocity‐correction derivatives. One is based on finite difference approximation, while the other is based on derivative expressions of Dirac delta function and velocity correction. It was found that both ways can work very well. The main advantage of the proposed method lies in its simple concept, easy implementation, and robustness in stability. Numerical experiments for both stationary and moving boundary problems were conducted to validate the capability and efficiency of the present method. Good agreements with available data in the literature were achieved. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A finite point method for solving compressible flow problems involving moving boundaries and adaptivity is presented. The numerical methodology is based on an upwind‐biased discretization of the Euler equations, written in arbitrary Lagrangian–Eulerian form and integrated in time by means of a dual‐time steeping technique. In order to exploit the meshless potential of the method, a domain deformation approach based on the spring network analogy is implemented, and h‐adaptivity is also employed in the computations. Typical movable boundary problems in transonic flow regime are solved to assess the performance of the proposed technique. In addition, an application to a fluid–structure interaction problem involving static aeroelasticity illustrates the capability of the method to deal with practical engineering analyses. The computational cost and multi‐core performance of the proposed technique is also discussed through the examples provided. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the performance of the incompressible SPH (ISPH) method and an improved weakly compressible SPH (IWCSPH) method for free surface incompressible flows are compared and analyzed. In both methods, the Navier–Stokes equations are solved, and no artificial viscosity is used. The ISPH algorithm in this paper is based on the classical SPH projection method with common treatments on solid boundaries and free surfaces. The IWCSPH model includes some advanced corrective algorithms in density approximation and solid boundary treatment (SBT). In density approximation, the moving least squares (MLS) approach is applied to re‐initialize density every several steps to obtain smoother and more stable pressure fields. An improved coupled dynamic SBT algorithm is implemented to obtain stable pressure values near solid wall areas and, thus, to minimize possible numerical oscillations brought in by the solid boundaries. Three representative numerical examples, including a benchmark test for hydrostatic pressure, a dam breaking problem and a liquid sloshing problem, are comparatively analyzed with ISPH and IWCSPH. It is demonstrated that the present IWCSPH is more attractive than ISPH in modeling free surface incompressible flows as it is more accurate and more stable with comparable or even less computational efforts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The governing equations for depth-averaged turbulent flow are presented in both the primitive variable and streamfunction–vorticity forms. Finite element formulations are presented, with special emphasis on the handling of bottom stress terms and spatially varying eddy viscosity. The primitive variable formulation is found to be preferable because of its flexibility in handling spatial variation in viscosity, variability in water surface elevations, and inflow and outflow boundaries. The substantial reduction in computational effort afforded by the streamfunction–vorticity formulation is found not to be sufficient to recommend its use for general depth-averaged flows. For those flows in which the surface can be approximated as a fixed level surface, the streamfunction–vorticity form can produce results equivalent to the primitive variable form as long as turbulent viscosity can be estimated as a constant.  相似文献   

11.
We present a compact finite differences method for the calculation of two‐dimensional viscous flows in biological fluid dynamics applications. This is achieved by using body‐forces that allow for the imposition of boundary conditions in an immersed moving boundary that does not coincide with the computational grid. The unsteady, incompressible Navier–Stokes equations are solved in a Cartesian staggered grid with fourth‐order Runge–Kutta temporal discretization and fourth‐order compact schemes for spatial discretization, used to achieve highly accurate calculations. Special attention is given to the interpolation schemes on the boundary of the immersed body. The accuracy of the immersed boundary solver is verified through grid convergence studies. Validation of the method is done by comparison with reference experimental results. In order to demonstrate the application of the method, 2D small insect hovering flight is calculated and compared with available experimental and computational results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The paper presents a new formulation of the integral boundary element method (BEM) using subdomain technique. A continuous approximation of the function and the function derivative in the direction normal to the boundary element (further ‘normal flux’) is introduced for solving the general form of a parabolic diffusion‐convective equation. Double nodes for normal flux approximation are used. The gradient continuity is required at the interior subdomain corners where compatibility and equilibrium interface conditions are prescribed. The obtained system matrix with more equations than unknowns is solved using the fast iterative linear least squares based solver. The robustness and stability of the developed formulation is shown on the cases of a backward‐facing step flow and a square‐driven cavity flow up to the Reynolds number value 50 000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
A new method for the computational analysis of fluid–structure interaction of a Newtonian fluid with slender bodies is developed. It combines ideas of the fictitious domain and the mortar element method by imposing continuity of the velocity field along an interface by means of Lagrange multipliers. The key advantage of the method is that it circumvents the need for complicated mesh movement strategies common in arbitrary Lagrangian–Eulerian (ALE) methods, usually used for this purpose. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a new numerical method is developed for two‐dimensional interfacial (free surface) flows, based on the control volume method and conservative integral form of the Navier–Stokes equations with a standard staggered grid. The new method deploys two continuity equations, the continuity equation of the mass conservation for better convergence of the implicit scheme and the continuity equation of the volume conservation for the equation of pressure correction. The convection terms (the total momentum flux) on the surfaces of control volume are accurately calculated from the wet area exposed to the water, and the dry area exposed to the air. The numerical results produced by the new numerical method agree very well with the analytical solution, experimental images and experimentally measured velocity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper describes the finite difference numerical procedure for solving velocity–vorticity form of the Navier–Stokes equations in three dimensions. The velocity Poisson equations are made parabolic using the false‐transient technique and are solved along with the vorticity transport equations. The parabolic velocity Poisson equations are advanced in time using the alternating direction implicit (ADI) procedure and are solved along with the continuity equation for velocities, thus ensuring a divergence‐free velocity field. The vorticity transport equations in conservative form are solved using the second‐order accurate Adams–Bashforth central difference scheme in order to assure divergence‐free vorticity field in three dimensions. The velocity and vorticity Cartesian components are discretized using a central difference scheme on a staggered grid for accuracy reasons. The application of the ADI procedure for the parabolic velocity Poisson equations along with the continuity equation results in diagonally dominant tri‐diagonal matrix equations. Thus the explicit method for the vorticity equations and the tri‐diagonal matrix algorithm for the Poisson equations combine to give a simplified numerical scheme for solving three‐dimensional problems, which otherwise requires enormous computational effort. For three‐dimensional‐driven cavity flow predictions, the present method is found to be efficient and accurate for the Reynolds number range 100?Re?2000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
The numerical solution of the time‐dependent Navier–Stokes equations in terms of the vorticity and a stream function is a well tested process to describe two‐dimensional incompressible flows, both for fluid mixing applications and for studies in theoretical fluid mechanics. In this paper, we consider the interaction between the unsteady advection–diffusion equation for the vorticity, the Poisson equation linking vorticity and stream function and the approximation of the boundary vorticity, examining from a practical viewpoint, global iteration stability and error. Our results show that most schemes have very similar global stability constraints although there may be small stability gains from the choice of method to determine boundary vorticity. Concerning accuracy, for one model problem we observe that there were cases where the boundary vorticity discretization did not propagate to the interior, but for the usual cavity flow all the schemes tested had error close to second order. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
We present an operator‐splitting scheme for fluid–structure interaction (FSI) problems in hemodynamics, where the thickness of the structural wall is comparable to the radius of the cylindrical fluid domain. The equations of linear elasticity are used to model the structure, while the Navier–Stokes equations for an incompressible viscous fluid are used to model the fluid. The operator‐splitting scheme, based on the Lie splitting, separates the elastodynamics structure problem from a fluid problem in which structure inertia is included to achieve unconditional stability. We prove energy estimates associated with unconditional stability of this modular scheme for the full nonlinear FSI problem defined on a moving domain, without requiring any sub‐iterations within time steps. Two numerical examples are presented, showing excellent agreement with the results of monolithic schemes. First‐order convergence in time is shown numerically. Modularity, unconditional stability without temporal sub‐iterations, and simple implementation are the features that make this operator‐splitting scheme particularly appealing for multi‐physics problems involving FSI. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, the immersed element‐free Galerkin method (IEFGM) is proposed for the solution of fluid–structure interaction (FSI) problems. In this technique, the FSI is represented as a volumetric force in the momentum equations. In IEFGM, a Lagrangian solid domain moves on top of an Eulerian fluid domain that spans over the entire computational region. The fluid domain is modeled using the finite element method and the solid domain is modeled using the element‐free Galerkin method. The continuity between the solid and fluid domains is satisfied by means of a local approximation, in the vicinity of the solid domain, of the velocity field and the FSI force. Such an approximation is achieved using the moving least‐squares technique. The method was applied to simulate the motion of a deformable disk moving in a viscous fluid due to the action of the gravitational force and the thermal convection of the fluid. An analysis of the main factors affecting the shape and trajectory of the solid body is presented. The method shows a distinct advantage for simulating FSI problems with highly deformable solids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The paper presents a semi‐implicit algorithm for solving an unsteady fluid–structure interaction problem. The algorithm for solving numerically the fluid–structure interaction problems was obtained by combining the backward Euler scheme with a semi‐implicit treatment of the convection term for the Navier–Stokes equations and an implicit centered scheme for the structure equations. The structure is governed either by the linear elasticity or by the non‐linear St Venant–Kirchhoff elasticity models. At each time step, the position of the interface is predicted in an explicit way. Then, an optimization problem must be solved, such that the continuity of the velocity as well as the continuity of the stress hold at the interface. During the Broyden, Fletcher, Goldforb, Shano (BFGS) iterations for solving the optimization problem, the fluid mesh does not move, which reduces the computational effort. The term ‘semi‐implicit’ used for the fully algorithm means that the interface position is computed explicitly, while the displacement of the structure, velocity and the pressure of the fluid are computed implicitly. Numerical results are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A new Lagrangian finite element formulation is presented for time-dependent incompressible free surface fluid flow problems described by the Navier-Stokes equations. The partial differential equations describing the continuum motion of the fluid are discretized using a Galerkin procedure in conjunction with the finite element approximation. Triangular finite elements are used to represent the dependent variables of the problem. An effective time integration procedure is introduced and provides a viable computational method for solving problems with equality of representation of the pressure and velocity fields. Its success has been attributed to the strict enforcement of the continuity constraint at every stage of the iterative process. The capabilities of the analysis procedure and the computer programs are demonstrated through the solution of several problems in viscous free surface fluid flow. Comparisons of results are presented with previous theoretical, numerical and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号