首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel ligand 3‐(1H‐imidazo[4,5‐f][1,10]phenanthrolin‐2‐yl)‐4H‐1‐benzopyran‐4‐one (ipbp) and its ruthenium(II) complexes [Ru(bpy)2(ipbp)]2+ ( 1 ) and [Ru(ipbp)(phen)2]2+ ( 2 ) (bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis and mass, 1H‐NMR, and electronic‐absorption spectroscopy. The electrochemical behavior of the complexes was studied by cyclic voltammetry. The DNA‐binding behavior of the complexes was investigated by spectroscopic methods and viscosity measurements. The results indicate that complexes 1 and 2 bind with calf‐thymus DNA in an intercalative mode. In addition, 1 and 2 promote cleavage of plasmid pBR 322 DNA from the supercoil form I to the open circular form II upon irradiation.  相似文献   

2.
A disposable electrochemical DNA-based biosensor was developed and applied as a screening device to detect an effect of a synthetically prepared quinazoline derivative on the surface-attached double stranded calf thymus DNA. Screen-printed carbon electrodes without and with multi-walled carbon nanotubes interface served as the signal transducer. The quinazoline interaction with DNA was investigated voltammetrically using DNA-bound electrochemical indicators such as [Co(phen)3]3+, [Ru(bpy)3]2+, methylene blue, the K3[Fe(CN)6] complex present in the solution phase as well as by electrochemical impedance spectroscopy. A severe damage to DNA at the incubation of the biosensor in quinazoline solution was found which leads to the loss of DNA from the electrode surface. Agarose gel electrophoresis was used to verify the results.  相似文献   

3.
Two novel chiral ruthenium(II) complexes, Δ‐[Ru(bpy)2(dmppd)]2+ and Λ‐[Ru(bpy)2(dmppd)]2+ (dmppd = 10,12‐dimethylpteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, bpy = 2,2′‐bipyridine), were synthesized and characterized by elemental analysis, 1H‐NMR and ES‐MS. The DNA‐binding behaviors of both complexes were studied by UV/VIS absorption titration, competitive binding experiments, viscosity measurements, thermal DNA denaturation, and circular‐dichroism spectra. The results indicate that both chiral complexes bind to calf‐thymus DNA in an intercalative mode, and the Δ enantiomer shows larger DNA affinity than the Λ enantiomer does. Theoretical‐calculation studies for the DNA‐binding behaviors of these complexes were carried out by the density‐functional‐theory method. The mechanism involved in the regulating and controlling of the DNA‐binding abilities of the complexes was further explored by the comparative studies of [Ru(bpy)2(dmppd)]2+ and of its parent complex [Ru(bpy)2(ppd)]2+ (ppd = pteridino[6,7‐f] [1,10]phenanthroline‐11,13 (10H,12H)‐dione).  相似文献   

4.
A new and sensitive electrochemical DNA hybridization detection assay, using tris(2,2′-bipyridyl)cobalt(III) [Co(bpy)33+]-doped silica nanoparticles as the oligonucleotide (ODN) labeling tag, and based on voltammetric detection of Co(bpy)33+ inside silica nanoparticles, is described. Electro-active Co(bpy)33+ is not possible for directly linking with DNA, it is doped into the silica nanoparticles in the process of nanoparticles synthesis for DNA labeling with trimethoxysilylpropydiethylenetriamine (DETA) and glutaraldehyde as linking agents. The Co(bpy)33+ labeled DNA probe is used to hybridize with target DNA immobilized on the surface of glassy carbon electrode. Only the complementary sequence DNA (cDNA) could form a double-stranded DNA (dsDNA) with the DNA probe labeled with Co(bpy)33+ and give an obvious electrochemical response. A three-base mismatch sequence and non-complementary sequence had negligible response. Due to the large number of Co(bpy)33+ molecules inside silica nanoparticles linked to oligonucleotide DNA probe, the assay showed a high sensitivity. It allows the detection at levels as low as 2.0×10−10 mol l−1 of the target oligonucleotides.  相似文献   

5.
A novel polypyridine ligand, dipyrido[3,2‐a:2′,3′‐c]phenazine‐11‐carboxylic acid methyl ester (=dppz‐11‐CO2Me), and its ruthenium(II) complex, [Ru(bpy)2(dppz‐11‐CO2Me)]2+ ( 1 ), were synthesized and characterized. The binding properties of this complex to calf‐thymus DNA (CT‐DNA) were investigated by different spectrophotometric methods and viscosity measurements. The results suggest that the complex binds to DNA in an intercalative mode and serves as a molecular ‘light switch’ for DNA. When irradiated at 365 nm, the complex 1 promoted the photocleavage of plasmid pBR‐322 DNA.  相似文献   

6.
Interactions of an anisomerous ruthenated porphyrin [Ru(MPyTPP)(bpy)2Cl]+ (where bpy = 2,2′-bipyridine, MPyTPP = 5-pyridyl-10,15,20-triphenyl porphyrin) with calf thymus DNA are studied using a tin-doped indium oxide (ITO) electrode. The RuIII/II redox reaction for the complex exhibits a surface-controlled electron transfer process in buffer solutions. There exists an obvious interaction of the adsorbed [Ru(MPyTPP)(bpy)2Cl]+ on an ITO electrode with DNA in the buffer solutions. The formal potential for [Ru(MPyTPP)(bpy)2Cl]2+/+ redox reaction is found to shift negatively in the presence of DNA compared with that in the absence of DNA. However, the current signals of [Ru(bpy)3]3+/2+ reaction exhibits a distinct catalytic enhancement to DNA, in contrast to the interactions of [Ru(MPyTPP)(bpy)2Cl]+with DNA.  相似文献   

7.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

8.
Broadband (λ > 320 nm) irradiation of chloroform solutions of either [Ru(bpy)2Cl2] or [Ru(bpy)2Cl2]Cl exposed to air led to a photostationary state, in which [Ru(bpy)2Cl2]+ predominated, and to the continuous decomposition of CHCl3, as evidenced by the accumulation of HCl, hydroperoxides (CCl3OOH and CHCl2OOH), and tetra-, penta-, and hexachloroethane. The addition of Cl? increased the rate of photodecomposition, while the replacement of Cl? by F? greatly decreased the rate. The observations are consistent with a photocatalytic cycle in which [Ru(bpy)2Cl2]+ is photochemically reduced to [Ru(bpy)2Cl2], which is thermally reoxidized by CCl3OO or CCl3OOH. In the absence of air a much slower photodecomposition reaction takes place leading to continuously increasing concentrations of chloroethanes. The data are consistent with a catalytic cycle in which [Ru(bpy)2Cl2]+ is photoreduced, as in aerated solutions, while [Ru(bpy)2Cl2] is photooxidized with chloroform as the substrate.  相似文献   

9.
The electrochemical behavior of aquabis(1,10‐phenanthroline)copper(II) perchlorate [Cu(H2O)(phen)2]·2ClO4, where phen=1,10‐phenanthroline, on binding to DNA at a glassy carbon electrode (GCE) and in solution, was described. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) results showed that [Cu(H2O)(phen)2]2+ had excellent electrochemical activity on the GCE with a couple of quasi‐reversible redox peaks. The interaction mode between [Cu(H2O)(phen)2]2+ and double‐strand DNA (dsDNA) was identified to be intercalative binding. An electrochemical DNA biosensor was developed with covalent immobilization of human immunodeficiency virus (HIV) probe for single‐strand DNA (ssDNA) on the modified GCE. Numerous factors affecting the probe immobilization, target hybridization, and indicator binding reactions were optimized to maximize the sensitivity and speed of the assay. With this approach, a sequence of the HIV could be quantified over the range from 7.8×10?9 to 3.1×10?7 mol·L?1 with a linear correlation of γ=0.9987 and a detection limit of 1.3×10?9 mol·L?1.  相似文献   

10.
The Raman and fluorescence spectroscopic properties of water‐soluble oxo‐titanium(IV) mesotetrakis (1‐methyl pyridium‐4‐yl) porphyrin (O=Ti(TMPyP)4+) bound with calf thymus DNA and artificial DNAs such as double stranded poly[d(A‐T)2] and poly[d(G‐C)2] have been investigated on the single DNA molecule basis by AFM‐correlated confocal scanning microscope (CSM)‐coupled Raman and fluorescence spectroscopic techniques as well as the ensemble‐averaged spectroscopy. The ensemble‐averaged spectroscopic studies imply that the porphyrin interacts with DNA in different groove binding patterns depending on the base pairs. AFM‐images of the different DNAs bound with O=Ti(TMPyP)4+ were measured, and their morphologies are found to depend on kind of base pairs interacting with O=Ti(TMPyP)4+. Being correlated with the AFM images, the CSM‐coupled Raman and fluorescence spectral properties of the three different single O=Ti(TMPyP)4+‐DNA complexes were observed to be highly resolved and sensitive to base pair‐dependent axial ligation of Ti‐O bond as compared to the corresponding ensemble‐averaged spectral properties, which affect the groove binding and its strength of the O=Ti(TMPyP)4+ with DNA. The axial ligation was found to be accompanied by vibration structural change of the porphyrin ring, leading to keep the shape of double stranded poly[d(A‐T)2] rigid while poly‐[d(G‐C)2] and calf thymus DNA flexible after binding with the oxo‐titanyl porphyrin. The base pair dependence of the fluorescence decay times of the DNA‐bound porphyrins was also observed, implying that an excited‐state charge transfer takes place in the G‐C rich major groove in calf thymus DNA. These results suggest that binding of O=Ti(TMPyP)4+ is more preferential with the G‐C rich major groove than with the A‐T rich minor groove in calf thymus DNA so that the morphology of DNA is changed.  相似文献   

11.
The time dependence of the voltammetric waves of [Fe(bpy)3]2+ adsorbed in clay-modified electrodes (CMES) differed greatly from those of [Ru(bpy)3]2+ and [Os(bpy)3]2+. The currents obtained with the ruthenium and osmium cations were essentially constant in the first 2 h that the CME spent in the blank electrolyte. For [Fe(bpy)3]2+, the maximum currents were twice as large. After a sharp rise in the first few scans, they decreased rapidly to less than half of their maximum values after 40 min. The decrease was more rapid when the potential was scanned continuously or when the pH of the electrolyte was increased. Coulometry shows that a larger fraction of the adsorbed [Fe(bpy)3] 2+ cations were oxidized and that they were oxidized much more rapidly than the other two cations. The unique behaviour of [Fe(bpy)3]2+ is attributed to its dissociation in the CME. UV—visible spectroscopy shows that significant dissociation of this cation occurred on the time-scale of the electrochemical measurements. Much larger currents were also found for CMEs containing cis- or trans-[Ru(bpy)2(H2O)2] 2+, and these are attributed to the greater mobility of adsorbed bis-bipyridyl cations.  相似文献   

12.
An electrically neutral cobalt complex, [Co(GA)2(phen)] (GA=glycollic acid, phen=1,10‐phenathroline), was synthesized and its interactions with double‐stranded DNA (dsDNA) were studied by using electrochemical methods on a glassy carbon electrode (GCE). We found that [Co(GA)2(phen)] could intercalate into the DNA duplex through the planar phen ligand with a high binding constant of 6.2(±0.2)×105 M ?1. Surface studies showed that the cobalt complex could electrochemically accumulate within the modified dsDNA layer, rather than within the single‐stranded DNA (ssDNA) layer. Based on this feature, the complex was applied as a redox‐active hybridization indicator to detect 18‐base oligonucleotides from the CaMV35S promoter gene. This biosensor presented a very low background signal during hybridization detection and could realize the detection over a wide kinetic range from 1.0×10?14 M to 1.0×10?8 M , with a low detection limit of 2.0 fM towards the target sequences. The hybridization selectivity experiments further revealed that the complementary sequence, the one‐base‐mismatched sequence, and the non‐complementary sequence could be well‐distinguished by the cobalt‐complex‐based biosensor.  相似文献   

13.
Selective glucose measurement in serum and blood and rapid glucose measurement using nicotinamide adenine dinucleotide (NAD)‐dependent glucose dehydrogenase (NAD‐GDH) are still very challenging. Here, we report a selective and rapid glucose sensor, based on electrochemical‐enzymatic‐enzymatic (ENN) redox cycling involving bis(2,2‐bipyridyl)dichloroosmium(II) [Os(bpy)2Cl2], diaphorase (DI), NAD+, NAD‐GDH, and glucose. DI and Os(bpy)2Cl2 are used to obtain fast mediated oxidation of NADH that is generated as a result of glucose oxidation by NAD‐GDH. DI and NAD‐GDH are co‐immobilized via affinity binding on an avidin‐modified indium tin oxide electrode to obtain fast and stable ENN redox cycling. Two enzymes (DI and NAD‐GDH) and two electron mediators [Os(bpy)2Cl2 and NAD+] are insensitive to oxygen. The applied potential (0.0 V vs Ag/AgCl) is low enough to minimize interfering electrochemical reactions, and the redox reactions of Os(bpy)2Cl2 with interfering species are slow. NAD‐GDH is much less reactive to problematic monosaccharides such as xylose, fructose, galactose, and mannose than glucose. Artificial serum containing 5 % (w/v) human serum albumin shows a similar electrochemical background level in serum. All results enable us to obtain selective and reproducible glucose detection. The fast ENN redox cycling allows sensitive glucose detection with a wide range of concentrations in artificial serum with a short measuring time (5 s) without an incubation period.  相似文献   

14.
Summary The complex Pt(bpyMe)Cl3 (bpyMe = N-methyl-2,2-bipyridylium cation) reacts with pyridine(py) to give cis-[Pt(bpy-Me) (py)Cl2]+, which on heating cyclometallates with loss of py to give Pt(bpyMe-H)Cl2; some Pt(py)2Cl2 is also formed. Pt(bpyMe)Cl3 reacts with 2,2-bipyridyl (bpy) to yield a mixture of [Pt(bpyMe-H)(bpy)]2+ and [Pt(bpy)2]2+. The analogous reactions with Pd(bpyMe)Cl3 proceed under very mild conditions to afford PdL2Cl2 (L2 = 2py, bpy).  相似文献   

15.
The ligand pteridino[6,7‐f] [1,10]phenanthroline‐11,13‐diamine (ppn) and its RuII complexes [Ru(bpy)2(ppn)]2+ ( 1 ; bpy=2,2′‐bipyridine) and [Ru(phen)2(ppn)]2+ ( 2 ; phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis, electrospray MS, 1H‐NMR, and cyclic voltammetry. The DNA‐binding behaviors of 1 and 2 were studied by spectroscopic and viscosity measurements. The results indicate that both complexes strongly bind to calf‐thymus DNA in an intercalative mode, with DNA‐binding constants Kb of (1.7±0.4)?106 M ?1 and (2.6±0.2)?106 M ?1, respectively. The complexes 1 and 2 exhibit excellent DNA‐‘light switch’ performances, i.e., they do not (or extremely weakly) show luminescence in aqueous solution at room temperature but are strongly luminescent in the presence of DNA. In particular, the experimental results suggest that the ancillary ligands bpy and phen not only have a significant effect on the DNA‐binding affinities of 1 and 2 but also have a certain effect on their spectral properties. [Ru(phen)2(ppn)]2+( 2 ) might be developed into a very prospective DNA‐‘light switch’ complex. To explain the DNA‐binding and spectral properties of 1 and 2 , theoretical calculations were also carried out applying the DFT/TDDFT method.  相似文献   

16.
韩洋  杨维春  王科志 《化学学报》2007,65(21):2382-2386
合成并表征了一个新的Ru(II)配合物[Ru(bpy)2(hedppc)](ClO4)2 {bpy=2,2'-联吡啶, hedppc=二联吡啶[3,2-a: 2',3'-c]吩嗪-11-羧酸(2-羟乙基)酯}. 通过紫外-可见吸收光谱、与溴化乙锭竞争实验、粘度测量和DNA裂解实验研究了配合物与小牛胸腺DNA的相互作用性质. 结果表明配合物以插入模式与DNA键合,键合常数Kb=(6.99±1.34)×106 mol-1•L (s=2.03±0.04)与母体配合物[Ru(bpy)2 (dppz)]2+相近,但光致发光和溶剂变色等光学性质与[Ru(bpy)2 (dppz)]2+有明显的差别.  相似文献   

17.
In the title compound, (C10H9N2)2[Pt(CN)6]·2C10H8N2 or [(Hbpy)+]2[Pt(CN)6]2−·2bpy, where bpy is 4,4′‐bipyridine, the Hbpy+ cations and bpy mol­ecules form a hydrogen‐bonded two‐dimensional cationic approximately square grid parallel to the (110) plane. The [Pt(CN)6]2− dianions reside in the cavities within this grid, with the nitrile N atoms forming weak hydrogen bonds with the CH groups in the cationic lattice.  相似文献   

18.
Photoselection and other spectroscopic data for [Ru(bpy)3]2+, [Ru(phen)3]2+, [Ru(bpy)(py)4]2+ and [Os(bpy)3]2+ suggest that the emitting state for the tris compounds may be localized on a single ring.  相似文献   

19.
The use of the solution redox species, [Os(bpy)2Cl2]+/0, [Os(bpy)2(MeIm)Cl]2+/+ and [Fe(CN)6]4−/3−, where bpy is 2,2-bipyridine and MeIm is N-methylimidazole, as electron mediators in the enzymatic reduction of oxygen by tyrosinase is investigated. Co-immobilization of both enzyme and an osmium redox mediator in a hydrogel on glassy carbon electrodes results in a biosensor for the ‘reagentless’ addressing of enzyme activity, consuming only oxygen present in solution. Immobilized enzyme inhibition biosensors can thus be constructed for the detection of tyrosinase inhibitors, such as sodium azide, using this approach. The enzyme inhibition biosensor can detect levels of azide as low as 5 × 10−6 mol dm−3 in solution and may be useful in environmental monitoring applications and as an early warning poison sensor.  相似文献   

20.
A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO2NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy)3]2+/3+ redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy)3]2+/3+ FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10−15 to 1 × 10−8 mol L−1. The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL−1 with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy)3]2+/3+ interaction with ssDNA before and after hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号