首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
ZnO nanowire was tailored both physically and chemically to immobilize the enzyme glucose oxidase (GOD) for construction of a glucose sensor with high performance, which was ascribed to its high specific surface area and high isoelectric point value for efficient immobilization of high concentration of acidic enzymes and the mediating effect by the redox reaction of ZnO nanowires. The apparent Michaelis constants Jmax, and KM were adjusted in a large scope by tailoring the thickness of the GOD/ZnO nanowire layer and the enzyme load in the nanowired network. Thus, a variety of linear region, sensitivities and reaction rates of the sensor could be easily achieved. Moreover, the glucose sensor showed long term stability with the incorporation of the inorganic zinc oxide nanowire.  相似文献   

2.
《Analytical letters》2012,45(7):1347-1360
Abstract

S-layer ultrafiltration membranes (SUMs) with an active filtration layer composed of coherent two-dimensional, isoporous protein crystals (S-layers) have been used as matrix for immobilizing monolayers of enzymes. Since S-layers are formed by periodic repetition of identical protein subunits, functional groups are present on the crystalline array in an identical position and orientation. As a consequence monolayers of enzymes can bind in a geometrically well defined way. For the covalent immobilization of enzymes carboxyl groups from the S-layer protein were activated with carbodiimide and allowed to react with amino groups of the enzyme. SUMs were employed as a new type of immobilization matrix for the developement of an amperometric glucose sensor using glucose oxidase (GOD) as the biologically active component. Glucose oxidase covalently bound to the surface of the S-layer protein retained approximately 40% of its activity. The enzyme loaded SUMs were covered with a layer of gold or platinum to function as working electrodes. These sensors yielded high signals (150nA/mm2/mmol glucose), fast response times (10–30s) and a linearity range up to 12 mM glucose. The stability under working conditions was more than 48 hours. There was no loss in activity after a storage period of 6 month.  相似文献   

3.
Glucose oxidase/hexokinase electrode for the determination of ATP   总被引:2,自引:0,他引:2  
A hydrogen peroxide based enzyme electrode for the determination of ATP has been developed by the immobilization of glucose oxidase and hexokinase. Competition between the enzymes for the substrate glucose allowed the measurement of ATP. Different immobilization procedures and different types of hexokinase have been tested. Using a BSA-glutaraldehyde procedure and hexokinase from an overproducing strain of bakers' yeast, ATP was measured in the 0.05–0.5 mmol l−1 range with a detection limit of 0.01 mmol l−1. ATP concentrations comparable to those reported in the literature and a good recovery were obtained when the enzyme electrode was used with human erythrocyte hemolysate.  相似文献   

4.
用亲水金、憎水二氧化硅纳米颗粒固定葡萄糖氧化酶(GOD),采用聚乙烯醇缩丁醛(PVB)为辅助固酶膜基质来制备葡萄糖生物传感器,并考察了亲水金、憎水二氧化硅纳米颗粒对酶电极电流响应的影响.实验表明,引入纳米粒子可显著增强电极响应灵敏度.并对两种不同性质纳米颗粒所起作用的可能机理进行讨论,从理论和实验上证明了纳米颗粒对固定酶的作用.为制备有实用价值的葡萄糖生物传感器提供了可供参考的实验和理论依据.  相似文献   

5.
纳米铜颗粒-酶-复合功能敏感膜生物传感器   总被引:10,自引:0,他引:10  
任湘菱  唐芳琼 《催化学报》2000,21(5):455-458
用水合联肼作还原剂研制成亲水纳米铜颗粒,用琥珀酸二异酯磺酸钠/丙三醇/正庚烷反胶束体系合成出憎水纳米铜颗粒,并通过透射电镜和紫外光谱考察了制得的纳米颗粒样品,用憎水纳米铜颗粒及亲水纳米铜颗粒与聚 烯醇缩丁醛构成复合固酶膜基质,用溶胶-凝胶法固定葡萄糖氧化酶,构建葡萄糖生物传感器,实验结果表明,纳米铜颗粒可大幅度提高固定化酶的催化活性,响应电流从相应浓度的几十纳安增强到几千纳安,从理论和实验上证明了  相似文献   

6.
The direct bioelectrocatalysis was demonstrated for pyrroloquinoline quinone‐dependent glucose dehydrogenase (PQQ‐dependent GDH) covalently attached to single‐walled carbon nanotubes (SWNTs). The homogeneous ink‐like SWNT suspension was used for both creating the SWNT network on the microelectrode carbon surface and for enzyme immobilization. Functionalization of the SWNT surface by forming active ester groups was found to considerably enhance SWNT solubility in water with a range from 0.1 to 1.0 mg/mL. The PQQ‐dependent GDH immobilized on the surface of the SWNTs exhibited fast heterogeneous electron transfer with a rate constant of 3.6 s?1. Moreover, the immobilized PQQ‐dependent GDH retained its enzymatic activity for glucose oxidation. A fusion of PQQ‐dependent GDH with SWNTs has a great potential for the development of low‐cost and reagentless glucose sensors and biofuel cells.  相似文献   

7.
Immobilization of enzymes with polymers is a topic of ongoing research. The activity of the immobilized enzyme is dependent upon the immobilization matrix and the immobilization methods.  相似文献   

8.
超细银-金复合颗粒增强酶生物传感器的研究   总被引:28,自引:1,他引:28  
任湘菱  唐芳琼 《化学学报》2002,60(3):393-397
用琥珀酸二异辛酯磺酸钠/环已烷反胶束体系合成憎水纳米银-金复合颗粒, 并用此纳米银-金颗粒与聚乙烯醇缩丁醛构成复合固酶模基质,用溶胶-凝胶法固 定葡萄糖氧化酶,构建葡萄糖生物传感器。实验表明,纳米憎水银-金颗粒可以大 幅度提高固定化酶的催化活性,响应电流从相应浓度的几十纳安增强几万纳安。探 讨了纳米颗粒效应在固定化酶中所起的作用,为纳米颗粒在生物传感器领域中的应 用提供了可参考的实验和理论依据。  相似文献   

9.
《Analytical letters》2012,45(10):2079-2094
Abstract

A potentially implantable glucose biosensor for measuring blood or tissue glucose levels in diabetic patients has been developed. The glucose biosensor is based on an amperometric oxygen electrode and immobilized glucose oxidase enzyme, in which the immobilized enzyme can be replaced (the sensor recharged) without surgical removal of the sensor from the patient. Recharging of the sensor is achieved by injecting fresh immobilized enzyme into the sensor using a septum. A special technique for immobilization of the enzyme on Ultra-Low Temperature Isotropic (ULTI) carbon powder held in a liquid suspension has been developed.

In vitro studies of the sensors show stable performance during several recharge cycles over a period of 3 months of continuous operation.

Diffusion membranes which ensure linear dependence of the sensor response on glucose concentration have been developed. These membranes comprise silastic latex-rubber coatings over a microporous polycarbonate membrane. Calibration curves of the amperometric signal show linearity over a wide range of glucose concentrations (up to 16 mM), covering hypoglycemic, normoglycemic and hyperglycemic conditions.

The experimental results confirm the suitability of the sensors for in vitro measurements in undiluted human sera.  相似文献   

10.
A novel method for preparing enzyme membranes was developed. The enzyme was attached onto the electrode surface by dropping the enzyme solution and allowing it to dry. Glucose oxidase was used for entrapment. Then, the electrode surface was coated with an ionic liquid containing cellulose, and the ionic liquid was removed by immersing the electrode into water. Enzyme activity was retained in the membrane; the enzyme electrode can be used for detecting glucose in the range of 10 μM to 1 mM, and the response time was ~10 s. The stability duration of the electrode was examined: the enzyme electrode could be used for glucose detection for 6 months. The membrane was observed by atomic force microscopy in the force modulation mode; crystalline and amorphous parts were intermingled. In conclusion, the cellulose membrane can be a suitable immobilization matrix for enzymes.  相似文献   

11.

Pyrrole functionalized polystyrene (PStPy) was copolymerized with pyrrole to obtain a conducting copolymer, P(PStPy‐co‐Py) which is used as the immobilization matrix. Glucose oxidase and polyphenol oxidase enzymes were immobilized via the entrapment method by electrochemical polymerization. Enzyme electrodes were prepared by electrolysis at a constant potential using sodium dodecyl sulfate (SDS) as the supporting electrolyte during the copolymerization of PStPy with pyrrole. Maximum reaction rates (Vmax) and enzyme affinities (Michaelis‐Menten constants, Km) were determined for the enzyme entrapped both in polypyrrole (PPy) and P(PStPy‐co‐Py) matrices. Optimizations of enzyme electrodes were done by examining the effects of temperature and pH on enzymes' activities along with the shelf life and operational stability investigations. Glucose oxidase enzyme electrodes were used for human serum analysis and glucose determination in two brands of orange juices. Polyphenol oxidase enzyme electrodes were used for the determination of phenolics in red wines of Turkey.  相似文献   

12.
A highly efficient enzyme immobilization method has been developed for electrochemical biosensors using polydopamine films with gold nanoparticles (AuNPs) embedded. This simple enzyme fabrication method can be performed in very mild conditions and stored in a long time with high bioactivity. The fabricated amperometric glucose biosensor exhibited a high and reproducible sensitivity, wide linear dynamic range and low limit of detection (LOD) (0.1 μmol·L?1). A low value of 1.5 mmol·L?1 for the apparent Michaelis‐Menten constant KappM was obtained. The high sensitivity, wide linear range, good reproducibility and stability make this biosensor a promising candidate for portable amperometric glucose biosensor.  相似文献   

13.
Glucose biosensor enhanced by nanoparticles   总被引:4,自引:0,他引:4  
Glucose biosensors have been formed with glucose oxidase (GOD) immobilized in composite immobilization membrane matrix, which is composed of hydrophobic gold, or hydro-philic gold, or hydrophobic silica nanoparticles, or the combination of gold and silica nanoparticles, and polyvinyl butyral (PVB) by a sol-gel method. The experiments show that nanoparticles can significantly enhance the catalytic activity of the immobilization enzyme. The current response can be increased from tens of nanoamperometer (nA) to thousands of nanoamperometer to the same glucose concentration, and the electrodes respond very quickly, to about 1 min. The function of nanoparticles effect on immobilization enzyme has been discussed.  相似文献   

14.
Electron transfer (ET) reactions in bioelectrocatalysis of enzymes at electrode surfaces require not only the efficient immobilization, but also highly conductive nanostructured platform, which allows for retaining its bioactivity and structural conformation. The novel architecture of spatially separated electrochemically reduced graphene oxide (ERGO) by multi‐walled carbon nanotubes functionalized with 4‐(pyrrole‐1‐yl) benzoic acid (MWCNT/PyBA) with the accurate porous structure could be an alternative for earlier approaches to the construction of bioelectrocatalytic systems with rapid diffusion of reagents from the solution to the enzyme molecule. The formation of ERGO/MWCNT/PyBA system was confirmed by electrochemical, spectroscopic and microscopic methods. The cyclic voltammetry experiments revealed that the presence of ERGO in the conductive material affects the electronic communication between the enzyme molecule and modified electrode surface greatly improving its ET properties resulting in a double increase of the heterogeneous ET rate constant value (ks=6.5 s?1). The fabricated glucose oxidase based biosensor sensitively detects glucose, therefore, ERGO/MWCNT/PyBA architecture could provide a novel and efficient platform for immobilization of redox enzymes.  相似文献   

15.
生物功能电极 III. 葡萄糖氧化酶的电化学固定化研究   总被引:5,自引:4,他引:5  
利用磷酸盐缓冲溶液中吡咯的电聚合, 将葡萄糖氧化酶(GOD)包埋在聚吡咯(PPy)基质中以构成生物功能电极。讨论了溶液pH和聚合电位对酶固定化的影响, 并用IR和交流阻抗谱对酶膜进行表征。GOD的固定化只有当pH>5.5时才能实现, 由此推测酶是以带负电的粒子嵌入PPy的。交流阻抗谱表明这一电极具有有界多孔电极的特征。探索了酶与电子传递体Fe(CN)_6~(3-)同时固定化的可行性。电化学固定化的GOD保持其生物催化活性, 酶反应表观上遵循Michealis-Menten动力学。  相似文献   

16.
《Electroanalysis》2003,15(10):885-891
Initial results on the synthesis of a new conjugated diazonium salt of trans‐4‐cinnamic acid diazonium fluoroborate, which is used for the chemical modification of the glassy carbon (GC) electrode with trans‐4‐cinnamic acid groups through electrochemical reduction, and direct covalent immobilization of glucose oxidase (GOD) on the cinnamic acid groups are presented. The chemically modified GC electrode exhibits a good selectivity relative to the bare GC electrode for the various possible interfering compounds in glucose analysis: namely ascorbic acid and 4‐acetamidophenol. Covalent immobilization of GOD on the chemically modified GC electrode produces a biosensor which responds to glucose concentration changes in the presence of a soluble redox mediator (ferrocenemethanol). The chemical modification of GC by cinnamic acid groups is potentially useful for the attachment of other enzymes and biochemical reagents.  相似文献   

17.
This paper focuses on the immobilization of a proteolytic enzyme, trypsin, on plasma polymerized allylamine (ppAA) films. The later have been deposited onto silicon substrate by means of radiofrequency glow discharge. The covalent attachment of the enzyme was achieved in three steps: (i) activation of the polymer surface with glutaraldehyde (GA) as a linker, (ii) immobilization of trypsin and (iii) imino groups reduction treatment. The effects and efficiency of each step were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Fluorescent spectroscopy was used to evaluate the change of the biological activity following the immobilization steps. The results showed that enzyme immobilization on GA-modified substrate increases the enzyme activity by 50% comparing to adsorbed enzymes, while the imino reduction treatment improves the enzyme retention by about 30% comparing to untreated samples. In agreement with XPS and AFM data, UV–vis absorption spectroscopy, used to quantify the amount of immobilized enzyme, showed that allylamine plasma polymer presents a high adsorption yield of trypsin. Although the adsorbed enzymes exhibit a lower activity than that measured for enzymes grafted through GA linkers, the highest catalytic activity obtained was for the enzymes that underwent the three steps of the immobilization process.  相似文献   

18.
The use of biotinylated alginate as an immobilization matrix of enzymes on the surface of the amperometric transducer is described herein. The model used is that of the well-established glucose detection. Several types of immobilization protocols were tested. In the exception of one protocol, biotin labeled glucose oxidase was shown to first require conjugation with avidin, before its immobilization onto a biotin-alginate gel matrix. The response of the biosensors to incremental additions of glucose, was measured by potentiostating the modified electrodes at 0.6 V/SCE. The permeability of the modified electrodes was thereafter measured by using rotating disk electrode (RDE) voltammetry with ferrocenemonocarboxylic acid as the electroactive probe.  相似文献   

19.
Reagentless, oxygen-independent glucose biosensors based on an Os-complex-modified polypyrrole matrix and on soluble PQQ-dependent glucose dehydrogenase from Acinetobacter calcoaceticus are described.As the soluble form of glucose dehydrogenase from Acinetobacter calcoaceticus is a hydrophilic enzyme with a positive net charge, its entrapment into the positively charged hydrophobic polypyrrole film is much more complicated than that of the corresponding membrane enzyme or the negatively charged and very stable glucose oxidase. Possible ways for using soluble PQQ-dependent glucose dehydrogenase in combination with conducting polymer films are seen in the modulation of the enzyme properties by covalent binding of suitable compounds to the protein shell together with the adjustment of the properties of the conducting polymer film. This can be done by neutralising the net charge of the protein and/or optimising the electron-transfer pathway between enzyme and electrode surface by covalent binding of suitable redox relays to the protein surface.In addition, methods for increasing the hydrophilicity of the polymer film, such as the co-entrapment of high-molecular weight hydrophilic additives and copolymerisation of hydrophilic pyrrole derivatives are presented. It is demonstrated that the replacement of the parent monomer pyrrole by a suitable hydrophilic pyrrole derivative facilitates the entrapment of the modified soluble PQQ-dependent glucose dehydrogenase into the Os-complex-modified polymer and hence allows for the development of reagentless biosensors.  相似文献   

20.
姚慧  李楠  徐景忠  朱俊杰 《中国化学》2005,23(3):275-279
本文选用生物相容性好的壳聚糖作为基体材料,使其与戊二醛交联成网状结构包埋葡萄糖氧化酶制成电化学传感器。这种壳聚糖膜不仅可以减小葡萄糖氧化酶的流失,而且能为酶提供了适宜的微环境。用红外光谱、紫外光谱及透射电镜对膜的形态和性质进行了表征。实验结果表明该传感器具有很快的响应速度,很好的稳定性和重现性,能选择性地催化葡萄糖并测定其浓度。该传感器的制备方法简单,成本低,于冰箱中放置两周信号保持在90%以上,对葡萄糖测量的线性范围为1×10-5 - 3.4×10-3mol•L-1,当信噪比为3:1时检测限为5×10-6mol•L-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号