首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ser, Cys, and His side chains play decisive roles in the syntheses, structures, and functions of proteins and enzymes. For our structural and biomedical investigations of β‐peptides consisting of amino acids with proteinogenic side chains, we needed to have reliable preparative access to the title compounds. The two β3‐homoamino acid derivatives were obtained by Arndt–Eistert methodology from Boc‐His(Ts)‐OH and Fmoc‐Cys(PMB)‐OH (Schemes 2–4), with the side‐chain functional groups' reactivities requiring special precautions. The β2‐homoamino acids were prepared with the help of the chiral oxazolidinone auxiliary DIOZ by diastereoselective aldol additions of suitable Ti‐enolates to formaldehyde (generated in situ from trioxane) and subsequent functional‐group manipulations. These include OH→OtBu etherification (for β2hSer; Schemes 5 and 6), OH→STrt replacement (for β2hCys; Scheme 7), and CH2OH→CH2N3→CH2NH2 transformations (for β2hHis; Schemes 9–11). Including protection/deprotection/re‐protection reactions, it takes up to ten steps to obtain the enantiomerically pure target compounds from commercial precursors. Unsuccessful approaches, pitfalls, and optimization procedures are also discussed. The final products and the intermediate compounds are fully characterized by retention times (tR), melting points, optical rotations, HPLC on chiral columns, IR, 1H‐ and 13C‐NMR spectroscopy, mass spectrometry, elemental analyses, and (in some cases) by X‐ray crystal‐structure analysis.  相似文献   

2.
In view of the prominent role of the 1H‐indol‐3‐yl side chain of tryptophan in peptides and proteins, it is important to have the appropriately protected homologs H‐β2 HTrp OH and H‐β3 HTrp OH (Fig.) available for incorporation in β‐peptides. The β2‐HTrp building block is especially important, because β2‐amino acid residues cause β‐peptide chains to fold to the unusual 12/10 helix or to a hairpin turn. The preparation of Fmoc and Z β2‐HTrp(Boc) OH by Curtius degradation (Scheme 1) of a succinic acid derivative is described (Schemes 2–4). To this end, the (S)‐4‐isopropyl‐3‐[(N‐Boc‐indol‐3‐yl)propionyl]‐1,3‐oxazolidin‐2‐one enolate is alkylated with Br CH2CO2Bn (Scheme 3). Subsequent hydrogenolysis, Curtius degradation, and removal of the Evans auxiliary group gives the desired derivatives of (R)‐H β2‐HTrp OH (Scheme 4). Since the (R)‐form of the auxiliary is also available, access to (S)‐β2‐HTrp‐containing β‐peptides is provided as well.  相似文献   

3.
Multigram amounts of suitably protected β2‐amino acids with 17 of the 20 proteinogenic side chains are prepared by diastereoselective reactions of Li, B, or Ti enolates of the corresponding 3‐acyl‐4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐ones (acyl‐DIOZ; 1 ) with appropriate electrophiles (amidomethylation, hydroxyalkylation, (benzyloxycarbonyl)methylation) in yields of 55–90% and with diastereoselectivities of 80 to >97% (Scheme). The primary products 2 – 8 thus obtained are converted to protected β2‐amino acids by standard procedures (Table 1). Many of the DIOZ derivatives are highly crystalline compounds (31 X‐ray crystal structures in Table 2). The chiral auxiliary DIOZ, readily prepared in either enantiomeric form, is recovered with high yield.  相似文献   

4.
The title compounds were prepared from valine‐derived N‐acylated oxazolidin‐2‐ones, 1 – 3, 7, 9 , by highly diastereoselective (≥ 90%) Mannich reaction (→ 4 – 6 ; Scheme 1) or aldol addition (→ 8 and 10 ; Scheme 2) of the corresponding Ti‐ or B‐enolates as the key step. The superiority of the ‘5,5‐diphenyl‐4‐isopropyl‐1,3‐oxazolidin‐2‐one’ (DIOZ) was demonstrated, once more, in these reactions and in subsequent transformations leading to various t‐Bu‐, Boc‐, Fmoc‐, and Cbz‐protected β2‐homoamino acid derivatives 11 – 23 (Schemes 3–6). The use of ω‐bromo‐acyl‐oxazolidinones 1 – 3 as starting materials turned out to open access to a variety of enantiomerically pure trifunctional and cyclic carboxylic‐acid derivatives.  相似文献   

5.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

6.
The preparation of (2S,3S)‐ and (2R,3S)‐2‐fluoro and of (3S)‐2,2‐difluoro‐3‐amino carboxylic acid derivatives, 1 – 3 , from alanine, valine, leucine, threonine, and β3h‐alanine (Schemes 1 and 2, Table) is described. The stereochemical course of (diethylamino)sulfur trifluoride (DAST) reactions with N,N‐dibenzyl‐2‐amino‐3‐hydroxy and 3‐amino‐2‐hydroxy carboxylic acid esters is discussed (Fig. 1). The fluoro‐β‐amino acid residues have been incorporated into pyrimidinones ( 11 – 13 ; Fig. 2) and into cyclic β‐tri‐ and β‐tetrapeptides 17 – 19 and 21 – 23 (Scheme 3) with rigid skeletons, so that reliable structural data (bond lengths, bond angles, and Karplus parameters) can be obtained. β‐Hexapeptides Boc[(2S)‐β3hXaa(αF)]6OBn and Boc[β3hXaa(α,αF2)]6‐OBn, 24 – 26 , with the side chains of Ala, Val, and Leu, have been synthesized (Scheme 4), and their CD spectra (Fig. 3) are discussed. Most compounds and many intermediates are fully characterized by IR‐ and 1H‐, 13C‐ and 19F‐NMR spectroscopy, by MS spectrometry, and by elemental analyses, [α]D and melting‐point values.  相似文献   

7.
We report on the synthesis of new and previously described β-peptides ( 1 – 6 ), consisting of up to twelve β2,2- or β3,3-geminally disubstituted β-amino acids which do not fit into any of the secondary structural patterns of β-peptides, hitherto disclosed. The required 2,2- and 3,3-dimethyl derivatives of 3-aminopropanoic acid are readily obtained from 3-methylbut-2-enoic acid and ammonia (Scheme 1) and from Boc-protected methyl 3-aminopropanoate by enolate methylation (Scheme 2). Protected (Boc for solution-, Fmoc for solid-phase syntheses) 1-(aminomethyl)cycloalkanecarboxylic-acid derivatives (with cyclopropane, cyclobutane, cyclopentane, and cyclohexane rings) are obtained from 1-cyanocycloalkanecarboxylates and the corresponding dihaloalkanes (Scheme 3). Fully 13C- and 15N-labeled 3-amino-2,2-dimethylpropanoic-acid derivatives were prepared from the corresponding labeled precursors (see asterixed formula numbers and Scheme 4). Coupling of these amino acids was achieved by methods which we had previously employed for other β-peptide syntheses (intermediates 18 – 23 ). Crystal structures of Boc-protected geminally disubstituted amino acids ( 16a – d ) and of the corresponding tripeptide ( 23a ), as well as NMR and IR spectra of an isotopically labeled β-hexapeptide ( 2a* ) are presented (Figs. 1 – 4) and discussed. The tripeptide structure contains a ten-membered H-bonded ring which is proposed to be a turn-forming motif for β-peptides (Fig. 2).  相似文献   

8.
Reaction of the cyclodiphosphazane [(OC4H8N)P(μ‐N‐t‐Bu)2P(HN‐t‐Bu)] ( 1 ) with an equimolar quantity of diisopropyl azodicarboxylate afforded the phosphinimine product [(OC4H8N)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2i‐Pr)NHCO2i‐Pr] ( 6 ) having a PIII‐N‐PV skeleton. Similar products [(t‐BuNH)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2Et)NHCO2Et] ( 7 ) and [(CO2i‐Pr)HNN(CO2i‐Pr)](t‐BuN=P(μ‐N‐t‐Bu)2POCH2CMe2CH2O[P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2i‐Pr)NH(CO2i‐Pr)] ( 8 ) were spectroscopically characterized in the reaction of [(t‐BuNH)P‐N‐t‐Bu]2 ( 2 ) and [(t‐BuNH)P(μ‐N‐t‐Bu)2POCH2CMe2CH2OP(μ‐N‐t‐Bu)2P(NH‐t‐Bu)] ( 3 ) with diethyl‐ and diisopropyl azodicarboxylate, respectively. By contrast, the reaction of [(μ‐t‐BuN)P]2[O‐6‐t‐Bu‐4‐Me‐C6H2]2CH2 ( 4 ) and [(C5H10N)P‐μ‐N‐t‐Bu]2 ( 5 ) with diisopropyl azodicarboxylate afforded the mono‐ and bis‐oxidized compounds [(O)P(μ‐N‐t‐Bu)2P][O‐6‐t‐Bu‐4‐Me‐C6H2]2CH2 ( 9 ) and [(C5H10N)(O)P‐μ‐N‐t‐Bu]2 ( 10 ), respectively. Oxidative addition of o‐chloranil to 7 and its DIAD analogue [(t‐BuNH)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2i‐Pr)NHCO2i‐Pr] ( 11 ) afforded [(C6Cl4‐1, 2‐O2)(t‐BuNH)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2R)NHCO2R] [R = Et ( 12 ) and i‐Pr ( 13 )] containing tetra‐ and pentacoordinate PV atoms in the cyclodiphosphazane ring. The structures of 6 , 9 , 12 and 13 have been confirmed by X‐ray structure determination. For comparison, the X‐ray structure of the double cycloaddition product [(C6Cl4‐1, 2‐O2)(t‐BuNH)PN‐t‐Bu]2 ( 14 ), obtained from the reaction of 2 with two mole equivalents of o‐chloranil is also reported.  相似文献   

9.
Two representatives of a new type of β‐amino acids, carrying two functionalized side chains, one in the 2‐ and one in the 3‐position, have been prepared stereoselectively: a β‐Ser derivative with an additional CH2OH group in the 2‐position (for β‐peptides with better water solubility; Scheme 2) and a β‐HCys derivative with an additional CH2SBn group in the 2‐position (for disulfide formation and metal complexation with the derived β‐peptides; Scheme 3). Also, a simple method for the preparation of α‐methylidene‐β‐amino acids is presented (see Boc‐2‐methylidene‐β‐HLeu‐OH, 8 in Scheme 3). The two amino acids with two serine or two cysteine side chains are incorporated into a β‐hexa‐ and two β‐heptapeptides ( 18 and 23/24 , resp.), which carry up to four CH2OH groups. Disulfide formation with the β‐peptides carrying two CH2SH groups generates very stable 1,2‐dithiane rings in the centre of the β‐heptapeptides, and a cyclohexane analog was also prepared (cf. 27 in Scheme 6). The CD spectra in H2O clearly indicate the presence of 314‐helical structures of those β‐peptides ( 18 , 23 , 24 , 27b ) having the `right' configurations at all stereogenic centers (Fig. 2). NMR Measurements (Tables 1 and 2, and Fig. 4) in aqueous solution of one of the new β‐peptides ( 24 ) are interpreted on the assumption that the predominant secondary structure is the 314‐helix, a conformation that has been found to be typical for β‐peptides in MeOH or pyridine solution, according to our previous NMR investigations.  相似文献   

10.
β‐Peptides offer the unique possibility to incorporate additional heteroatoms into the peptidic backbone (Figs. 1 and 2). We report here the synthesis and spectroscopic investigations of β2‐peptide analogs consisting of (S)‐3‐aza‐β‐amino acids carrying the side chains of Val, Ala, and Leu. The hydrazino carboxylic acids were prepared by a known method: Boc amidation of the corresponding N‐benzyl‐L ‐α‐amino acids with an oxaziridine (Scheme 1). Couplings and fragment coupling of the 3‐benzylaza‐β2‐amino acids and a corresponding tripeptide (N‐Boc/C‐OMe strategy) with common peptide‐coupling reagents in solution led to β2‐di, β2‐tri‐, and β2‐hexaazapeptide derivatives, which could be N‐debenzylated ( 4 – 9 ; Schemes 2–4). The new compounds were identified by optical rotation, and IR, 1H‐ and 13C‐NMR, and CD spectroscopy (Figs. 4 and 5) and high‐resolution mass spectrometry, and, in one case, by X‐ray crystallography (Fig. 3). In spite of extensive measurements under various conditions (temperatures, solvents), it was not possible to determine the secondary structure of the β2‐azapeptides by NMR spectroscopy (overlapping and broad signals, fast exchange between the two types of NH protons!). The CD spectra of the N‐Boc and C‐OMe terminally protected hexapeptide analog 9 in MeOH and in H2O (at different pH) might arise from a (P)‐314‐helical structure. The N‐Boc‐β2‐tri and N‐Boc‐β2‐hexaazapeptide esters, 7 and 9 , were shown to be stable for 48 h against the following peptidases: pronase, proteinase K, chymotrypsin, trypsin, carboxypeptidase A, and 20S proteasome.  相似文献   

11.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

12.
The 1,4‐cis‐diethynylated α‐D ‐mannopyranose analogue 11 has been prepared from 1,6 : 2,3‐dianhydro‐β‐D ‐allopyranose ( 6 ) by alkynylating epoxide and acetal opening (Scheme 2). Eglinton coupling of 11 gave the cyclodimer 18 (Scheme 3). Crystal‐structure analysis of the corresponding bis(methanesulfonate) 19 revealed substantially bent butadiyne moieties; one mannopyranosyl ring adopts the 4C1 and the other one a slightly distorted OS2 conformation (Fig. 1). Hydrogenation of 18 , followed by deprotection, gave the stable butane‐1,4‐diyl‐bridged cyclodimer 21 (Scheme 3). Crystal‐structure analysis shows the 4C1 conformation of the mannopyranosyl units (Fig. 2). The two butane fragments are characterised by a combination of gauche and antiperiplanar arrangements.  相似文献   

13.
The H2O‐soluble cyclic β3‐tripeptide cyclo(β‐Asp‐β3‐hVal‐β3‐hLys) ( 4 ) was obtained by on‐resin cyclization of the side‐chain‐anchored β‐peptide 3 (Scheme). In aqueous solution, 4 adopts a structure with uniformly oriented amide bonds and all side chains in lateral positions (Fig. 3).  相似文献   

14.
Since the C15 β‐end‐group aldehyde 10 ((β‐ionylidene)acetaldehyde), an excellent intermediate in the syntheses of retinoids, can be synthesized in many ways from β‐ionone, and since the corresponding acyclic C15 ψ‐end‐group aldehyde 5 can easily be synthesized from citral ( 1 ) (Scheme 3), we applied the C15+C5 route to the syntheses of γ‐retinal ((all‐E)‐ 8 ) (Scheme 3) and retinal ((all‐E)‐ 13 ) (Scheme 4), and therefore, by coupling (2×C20→C40), to the preparation of lycopene ( 14 ) and β‐carotene ( 15 ) (Scheme 5). Our new syntheses of retinal ((all‐E)‐ 13 ) and γ‐retinal ((all‐E)‐ 8 use an extended aldol reaction with a C6 building block that incorporates a C5 unit after decarboxylation.  相似文献   

15.
A brief overview is presented of the field of organocatalysis using chiral H‐bond donors, chiral Brønsted acids, and chiral counter‐anions (Fig. 1). The role of TADDOLs (=α,α,α′,α′‐tetraaryl‐1,3‐dioxolane‐4,5‐dimethanols) as H‐bond donors and the importance of an intramolecular H‐bond for acidity enhancement are discussed. Crystal structures of TADDOLs and of their N‐, S‐, and P‐analogs (Figs. 2 and 3) point the way to proposals of mechanistic models for the action of TADDOLs as organocatalysts (Scheme 1). Simple experimental two‐step procedures for the preparation of the hitherto strongest known TADDOL‐derived acids, the bicyclic phosphoric acids ( 2 in Scheme 2) and of a phosphoric‐trifluorosulfonic imide ( 9 in Scheme 4), are disclosed. The mechanism of sulfinamide formation in reactions of TADDAMIN with trifluoro‐sulfonylating reagents is discussed (Scheme 3). pKa Measurements of TADDOLs and analogs in DMSO (reported in the literature; Fig. 5) and in MeO(CH2)2OH/H2O (described herein; Fig. 6) provide information about further possible applications of this type of compounds as strong chiral Brønsted acids in organocatalysis.  相似文献   

16.
N‐Allyl, N‐cinnamyl, and N‐(3‐trimethylsilyl)propargyl derivatives of 4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐one (DIOZ) are prepared by lithiation of the parent DIOZ (with BuLi in THF) and reaction with the corresponding bromides (Scheme 1). Lithiation in the same solvent, with deprotonation by BuLi on the allylic or propargylic CH2 group at dry‐ice temperature, provides colorful solutions, which are either combined with aldehydes or ketones directly or after addition (with or without warming) of (Me2N)3TiCl or (i‐PrO)3TiCl. Conditions have thus been elaborated under which all three types of conjugated lithium compounds react in the γ‐position with respect to the oxazolidinone N‐atom: carbamoyl derivatives of enamines and allenyl amines are formed in yields ranging from 60 to 80% and with diastereoselectivities up to 98% (Schemes 2–5). The C=C bond of the N‐hydroxyalkenyl groups has (Z)‐configuration (products 5 and 8 ), the allene chirality axis has (M)‐configuration (products 9 ), and the addition to aldehydes and unsymmetrical ketones has taken place preferentially from the Si face. A mechanistic model is proposed that is compatible with the stereochemical outcome (assuming kinetic control and disregarding the presence of Li and Ti species in the reaction mixture; cf. L, M in Fig. 4). Hydrolysis of the enamine derivatives leads to lactols, oxidizable to γ‐lactones, with recovery of the crystalline oxazolidinone, as demonstrated in three cases (Scheme 6). Thus, the application of chiral oxazolidinone auxiliaries (cf. Figs. 1 and 2) has been extended to the overall enantioselective preparation of homoaldols.  相似文献   

17.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

18.
γ4‐Tripeptides and γ4‐hexapeptides, 1 – 4 , with OH groups in the 2‐ or 3‐position on each residue have been prepared. The corresponding 2‐hydroxy amino acids were obtained by Si‐nitronate (3+2) cycloadditions to the acryloyl derivative of Oppolzer's sultam and Raney‐Ni reduction of the resulting 1,2‐oxazolidines (Scheme 1). The 3‐hydroxy amino acid derivatives were prepared by chain elongation via Claisen condensation of Boc‐Ala‐OH, Boc‐Val‐OH, and Boc‐Leu‐OH, and NaBH4 reduction of the methyl 4‐amino 3‐oxo carboxylates formed (Scheme 2). The N‐Boc hydroxy amino acids were coupled in solution to give the γ‐peptides. CD Spectra of the new types of γ‐peptides were recorded and compared with those of simple γ2‐, γ3‐, γ4‐, and γ2,3,4‐peptides (Figs. 3, 4, and 5). An intense Cotton effect at ca. 200 nm ([Θ]=−2⋅105 deg⋅cm2⋅dmol−1) indicates that the hexapeptide built of (3R,4S)‐4‐amino‐3‐hydroxy acids (with the side chains of Val, Ala, Leu) folds to a secondary structure so far unknown. The stability of peptides from β‐ and γ‐amino acids, which carry heteroatoms on their backbones is discussed (Fig. 1). Positions on the γ‐peptidic 2.614 helix are identified at which non‐H‐atoms are `allowed' (Fig. 2).  相似文献   

19.
Cyclo‐β‐tetrapeptides are known to adopt a conformation with an intramolecular transannular hydrogen bond in solution. Analysis of this structure reveals that incorporation of a β2‐amino‐acid residue should lead to mimics of ‘α‐peptidic β‐turns’ (cf. A, B, C ). It is also known that short‐chain mixed β/α‐peptides with appropriate side chains can be used to mimic interactions between α‐peptidic hairpin turns and G protein‐coupled receptors. Based on these facts, we have now prepared a number of cyclic and open‐chain tetrapeptides, 7 – 20 , consisting of α‐, β2‐, and β3‐amino‐acid residues, which bear the side chains of Trp and Lys, and possess backbone configurations such that they should be capable of mimicking somatostatin in its affinity for the human SRIF receptors (hsst1–5). All peptides were prepared by solid‐phase coupling by the Fmoc strategy. For the cyclic peptides, the three‐dimensional orthogonal methodology (Scheme 3) was employed with best success. The new compounds were characterized by high‐resolution mass spectrometry, NMR and CD spectroscopy, and, in five cases, by a full NMR‐solution‐structure determination (in MeOH or H2O; Fig. 4). The affinities of the new compounds for the receptors hsst1–5 were determined by competition with [125I]LTT‐SRIF28 or [125I] [Tyr10]‐CST14. In Table 1, the data are listed, together with corresponding values of all β‐ and γ‐peptidic somatostatin/Sandostatin® mimics measured previously by our groups. Submicromolar affinities have been achieved for most of the human SRIF receptors hsst1–5. Especially high, specific binding affinities for receptor hsst4 (which is highly expressed in lung and brain tissue, although still of unknown function!) was observed with some of the β‐peptidic mimics. In view of the fact that numerous peptide‐activated G protein‐coupled receptors (GPCRs) recognize ligands with turn structure (Table 2), the results reported herein are relevant far beyond the realm of somatostatin: many other peptide GPCRs should be ‘reached’ with β‐ and γ‐peptidic mimics as well, and these compounds are proteolytically and metabolically stable, and do not need to be cell‐penetrating for this purpose (Fig. 5).  相似文献   

20.
A general synthesis of the four isomeric N7α‐D ‐, N7β‐D ‐, N9α‐D ‐, and N9β‐D ‐(purin‐2‐amine deoxynucleoside phosphoramidite) building blocks for DNA synthesis is described (Scheme). The syntheses start with methyl 3′,5′‐di‐O‐acetyl‐2′‐deoxy‐D ‐ribofuranoside ( 2 ) as the sugar component and the N2‐acetyl‐protected 6‐chloropurin‐2‐amine 1 as the base precursor. N7‐Selectivity was achieved by kinetic control, and N9‐selectivity by thermodynamic control of the nucleosidation reaction. The two N7‐(purin‐2‐amine deoxynucleosides) were introduced into the center of a decamer DNA duplex, and their pairing preferences were analyzed by UV‐melting curves. Both the N7α‐D ‐ and N7β‐D ‐(purin‐2‐amine nucleotide) units preferentially pair with a guanine base within the Watson‐Crick pairing regime, with ΔTms of −6.7 and −8.7 K, respectively, relative to a C⋅G base pair (Fig. 3 and Table 1). Molecular modeling suggests that, in the former base pair, the purinamine base is rotated into the syn‐arrangement and is able to form three H‐bonds with O(6), N(1), and NH2 of guanine, whereas in the latter base pair, both bases are in the anti‐arrangement with two H‐bonds between the N(3) and NH2 of guanine, and NH2 and N(1) of the purin‐2‐amine base (Fig. 4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号